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 ABSTRACT

 Optimality properties of multiway block designs are deduced from the general results of
 J. Kiefer's approximate-design theory. In the model with additive effects these optimality properties
 solely depend on the two-dimensional marginals of the designs. Uniform designs, and designs whose
 two-dimensional marginals are products of the one-dimensional marginals, are shown to be optimal.
 Approximate Youden designs are introduced for the case when the support sets of the two-
 dimensional marginals are prescribed in advance. They are optimal in a relatively small class of
 competing designs only.

 RESUME

 On se sert de la theorie des plans approximatifs de Kiefer pour d6duire certaines propriet6s
 d'optimalit6 des plans de blocs pluridimensionnels. Dans le cadre d'un module a effets additifs, ces
 propri6t6s optimales ne dependent que des marges bidimensionnelles des plans d'exp6rience. On
 montre que les plans uniformes sont optimaux, de meme que les plans dont les marges bidi-
 mensionnelles sont des produits de marges a une dimension. On introduit des plans approximatifs
 de Youden dans le cas oi~ les supports des marges bidimensionnelles sont prescrits a l'avance. Ces
 derniers ne sont optimaux que par rapport a une classe relativement petite de plans rivaux.

 1. INTRODUCTION

 The approximate theory of block designs leads to structural insights which complement
 the optimality results from the exact theory, as has been demonstrated for a single blocking
 factor in recent work of Giovagnoli and Wynn (1981) and Pukelsheim (1983a). The
 present paper extends the approximate-theory approach to an arbitrary number of blocking
 factors, in models with additive effects and no interaction. It is the two-dimensional

 marginals of a multiway block design which determine its moment matrix, and hence its
 optimality properties.

 In Section 2 we define various notions of product designs and identify their C-matrices.
 In Section 3 no restriction is placed on the set of support points. Variety-factor product
 designs are shown to be uniformly optimal among the designs with given variety marginals
 and universally optimal among all designs, for the variety contrasts (Theorem 2).
 Multiway product designs turn out to be simultaneously p-mean optimal among all

 *An early version of this paper was delivered at a Statistical Conference dedicated to the memory of Jack
 Kiefer and Jacob Wolfowitz, held at Cornell University, July 1983, sponsored by the ARO, NSF, ONR, and
 Cornell University.
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 designs, for a maximal parameter system (Theorem 3).
 In Section 4 we turn to block designs with a restricted set of support points. Approxi-

 mate Youden designs (AYDs) are introduced as the approximate analogue of exact
 Youden designs. AYDs are seen to be universally optimal for the variety contrasts
 (Theorem 5) and simultaneously p-mean optimal for a maximal parameter system
 (Theorem 6), within a rather small class of competing designs. We demonstrate that their
 optimality breaks down when the class of competing designs is made larger.
 All our matrices are real. Transposition, generalized inversion, and Moore-Penrose

 inversion of a matrix A are denoted by A', A -, and A , respectively. Block matrices are
 indicated by [A :B]. The orthogonal projections onto the equiangular line of R' and onto
 its orthogonal complement are represented by J,/v and K, = I, - J,l/v, respectively,
 where J, is the v x v matrix with each entry unity and I, is the v x v identity matrix. The

 equiangular line in [R' is 1, = (1,..., 1)', and 1, = 1,/v is the stochastic vector
 corresponding to the uniform distribution on v points.

 2. C-MATRICES OF PRODUCT DESIGNS

 An approximate block design for v varieties in b, x? ? >x bm blocks, or simply a
 multiway block design, is a probability distribution on the design space

 s = {1,...,v} x {l,...,b,} x. x {1,..., bm),
 indicating that a proportion t(i,j ,... ,jm) of all observations is to be drawn when variety
 i is combined with factor levels j] ,... ,jm. The variety marginals of a design t consist of

 the variety replication vector r E Rv with entries ri = t(i, ,. . . ",), the dots indicating
 summation. With an analogous definition factor k has factor marginals, or block-size

 vector, sk E ERb,. Two-dimensional marginals are identified with weight matrices, i.e. with
 matrices having nonnegative entries summing to unity. The variety-factor marginals with

 factor k are denoted by Wk E Xvx bk, and Wkl & bk x bl stands for the factor-factor
 marginals of two distinct factors k and 1.

 In the model with additive effects and no interaction (Cheng 1978, p. 1262) the moment
 matrix M(t) of a design t is determined by its two-dimensional marginals Wk and Wki
 according to

 Ar WI W2 " Win
 WA I W 1 A I W 12 . . [lA i r W

 M() = W, W12 2 W2nm = W say, (1)

 W,', W l, W'm ?? Am
 where Ar, A,,... , Am are the diagonal matrices formed from the one-dimensional mar-

 ginals r, s,..., Sm of (. The converse problem of constructing a design ( from a given
 moment matrix M is discussed by Pukelsheim and Titterington (1986a).
 Optimal designs will turn out to have product structure on their two-dimensional

 marginals, suggesting the following terminology. A multiway block design ( with moment
 matrix M(() as in (1) is called a

 variety-factor product design if Wk = rs' for k = 1,... , m,
 factor-factor product design if Wkl = SkS' for k 1, k, I = 1, ... ,m,
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 1986 APPROXIMATE MULTIWAY BLOCK DESIGNS 341

 multiway product design if it is both a variety-factor and a factor-factor product design.

 The design r 0 s, @-'- 0 sm is a very special case of a multiway product design.
 Interest will be in the parameter system of symmetrized variety contrasts (a1 -

 at_ ... , v - .)' = Ka, where a is the v-dimensional vector of variety effects. Given a design ?, its information matrix for Ka, called the C-matrix, is C(?) = ([K, : 0]M($)-
 [Kv: 0]')+ if Kva is identifiable under ?, and C(t) = 0 otherwise. If Kvae is identifiable
 under ?, then t has positive variety marginals. If is a multiway product design with

 positive variety marginals, then Kvae is identifiable under t. The following theorem
 presents a set of useful representations for C-matrices.

 THEOREM 1. Suppose t is a multiway block design with moment matrix M(t) as in (1) such
 that the variety contrasts are identifiable. Then

 C(t) = A, - WE-W'. (2)

 For variety-factor product designs, (2) specializes to

 C(t) = At- rr1', (3)
 and for factor-factor product designs, (2) specializes to

 C(t) = Ar - rr' - E (WkAkW' - rr'). (4)
 k=l

 Proof. Define C = Ar - WE- W', which is invariant under the choice of E- (Styan 1985,
 p. 45). First we show C(Q) = C. Partition M(t) into

 Ar W, R
 M( W) = W S ,

 R' S' T

 and choose a symmetric generalized inverse F of F = T - S'A S. Then a generalized
 inverse of E is

 E [A + A SFS'_S A -A, SF
 E = L1 +

 With this choice direct computation yields the representation

 C = Ar- WiA W' - (R - WIAS)F(R - W, AS)'. (5)

 Now WIA+W'1, = r, and (R - W1A+S)'1, = 0. This gives C1 = 0 and C+1v = 0.
 For M(t) choose the generalized inverse

 G -EW'C E + EW'C*WE'

 Hence we have C(() = ([KO: 0]G([K,: 0]')? = (KVC+Kl) = C" = C.
 When Wk = rs' for all k, then WA W' = rr' and R = WiA+S; thus (5) entails (3).

 When Wk; = SkSI for all k = 1, then F = Blockdiag [A2 - s2S2 . Am , - sS'l, and we
 find that (5) simplifies to (4) upon choosing F = Blockdiag [A: . : Am+]. Q.E.D.
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 Theorem 1 generalizes the well-known formula for simple block designs; the two-way
 results of Krafft (1978, p. 219), Raghavarao and Federer (1975, p. 731), and Pukelsheim
 (1983b, p. 36); and the multiway representation in Cheng (1978, p. 1265). Notice that a
 single iteration on Schur complementation in (5) suffices, independently of the number of
 blocking factors.

 3. OPTIMALITY OF PRODUCT DESIGNS

 The following theorem describes the optimality properties of variety-factor product
 designs. Its proof uses the inequality

 WkAkWk - rr' (Wk - rs')Ak(Wk - TS')' ? 0, (6)
 with equality if and only if Wk = rs'. This inequality also shows that (4) reflects the loss
 in information relative to (3) when variety-factor marginals fail to be product distributions.

 THEOREM 2.

 (a) Let r E R' be a positive stochastic vector. Then the variety-factor product designs
 with variety marginals r are the only uniformly optimal designs for the variety contrasts

 among the designs with variety marginals r; their common C-matrix is Ar - rr'.
 (b) The variety-factor product designs with uniform variety marginals 1, are the only

 universally optimal designs for the variety contrasts among all designs; their common

 C-matrix is pKv, with p = 1/v.

 Proof. Part (a) simply uses the explicit estimate C(t) Ar, - W, A W' ? Ar - rr' which follows from (5) and (6); equality forces W, = rs'. The same argument applies to any other
 factor k as well. Hence C($) < Ar - rr', with equality if and only if t is a variety-factor
 product design.

 For part (b) partition the set of all designs into its subsets with given variety marginals
 r which, due to identifiability, must be positive. Applying (a) within these subsets, we see

 that we need compare the matrices Ar - rr' only. The Cauchy inequality gives
 traceAr - rr' = 1 - r'r 1 - 1/v = tracepK,, with equality if and only if
 r = iv. Q.E.D.

 The theorem extends earlier results for one- and two-way block designs, see Pukelsheim
 (1983a, p. 202; 1983b, p. 37). Loewner comparability among C-matrices of the special
 form Ar - rr' is discussed by Baksalary and Pukelsheim (1985). An example where a
 two-way product design has gone unnoticed is the design d' of Kiefer (1958, p. 690).

 We now pass to maximal parameter systems. For a multiway product design t with
 positive marginals, r, s , . . . , s,, the matrix

 G = Blockdiag[A,' : A' - Jb, A ) .: A - Jbm]
 is a reflexive generalized inverse of the moment matrix M of , i.e., MGM = M and
 GMG = G. Verification uses the idempotent matrix

 sl1, 'Ib - Si11, 0.
 MG = = K(s), say, (7)

 Sm' 0 ' Ib, - Sml m
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 1986 APPROXIMATE MULTIWAY BLOCK DESIGNS 343

 with s = [s': : s']'; cf. Cheng (1978, p. 1264), Pukelsheim (1983a, p. 202). Hence
 M has maximal rank v + ZE?= ,(bk - 1) among all moment matrices. We consider the
 maximal parameter system K(s)'P, where 0 is the (v + Ebk)-dimensional vector of
 variety effects and factor-level effects. Recall that Kiefer's (p,-optimality is the same as
 maximizing the p-mean of the information matrices for the parameters of interest; cf.
 Pukelsheim (1983a).

 THEOREM 3. The multiway product designs with marginals r, s, ... , s, are the only
 designs which are p-mean optimal for the maximal parameter system K(s)' , simulta-
 neously for all p E [-co, +1], among the designs -q such that the one-dimensional

 marginals coincide with the corresponding member from r, sI ,.... , s,, unless this member
 is uniform, in which case the corresponding marginals of -q is unrestricted.

 The proof parallels the proof of Theorem 5 in Pukelsheim (1983a) and is omitted. We
 next turn to incomplete block designs.

 4. APPROXIMATE YOUDEN DESIGNS

 Youden's (Youden 1937) rectangles, Kiefer's (Kiefer 1975) generalized Youden
 designs, and Cheng's (Cheng 1981) pseudo-Youden designs correspond to approximate
 designs with two-dimensional marginals which are uniform on restricted support sets.

 To be precise, associate with a fixed variety-factor support set Sk C Wk = {1, .. , v}
 x {1,...,bk

 the v x bk indicator matrix Nk with (i,jk) entry equal to unity or zero according as (i,jk)
 lies in Sk or not,

 the number of points nk = lNklbk in Sk, and

 the weight matrix Nk Nk/nk of the uniform distribution on Sk.

 A multiway block design ? with moment matrix (1) is called an approximate Youden
 design (AYD) if it satisfies the following three properties:

 (A) t has variety-factor marginals which are uniform distributions on support sets
 Sk C Ck, i.e., Wk = Nk for all k = 1,... , m.

 (B) t is a factor-factor product design.

 (C) t is balanced for the variety contrasts, i.e., C(t) = pKv for some p > 0.

 An AYD with uniform factor marginals has uniform variety marginals, as follows from
 the following transcription of property (C).

 THEOREM 4. Suppose t is a multiway block design with uniform factor marginals which

 satisfies properties (A) and (B); let a = fl=, n'. Then (C) holds true if and only if

 (C') a "= bkNkN - (k X - X)l + hJ, for some scalars v, h;
 and in this case

 (D) r = 1v,
 (E) h = (a/v)(m - 1"=I bk/nk)/(v - 1) and v = (a/v)Y$= bk/nk are positive

 integers,

 (F) p = 1/v - ~I=,(bk/nk- 1/v)/(v - ) < l/v,

 (G) rank[N I: * : NmI = v - 1"= bk.
 The proof follows standard lines and is omitted. Formula (C') requires "7= , NkN' to

 be completely symmetric in case b = . . = bm and n = ... = n, as in Cheng (1981).

This content downloaded from 137.250.161.163 on Thu, 31 Aug 2017 12:36:17 UTC
All use subject to http://about.jstor.org/terms



 344 PUKELSHEIM Vol. 14, No. 4

 Hence AYDs are more general than Cheng's pseudo-Youden designs, in the approximate
 theory. The inequality p < 1/v in (F) exhibits the loss of information relative to the designs
 which appear in Theorem 2(b). The rank condition in (G) is an extension of Fisher's
 inequality on BIBDs. We now turn to the optimality properties of AYDs.

 THEOREM 5. An AYD t, with variety-factor support sets S1, ... ,Sm and positive one-
 dimensional marginals r,s, . . . ,sm, is universally optimal for the variety contrasts
 among the factor-factor product designs rq whose variety-factor support sets are contained
 in S, ... , Sk and whose one-dimensional marginals coincide with the corresponding

 member from r, s l,.... , s, unless r is uniform, in which case the variety marginals of ?q are unrestricted.

 Proof. Property (C) ascertains that t has a completely symmetric C-matrix. It remains to
 show that the C-matrix has maximal trace, and this will follow solely from properties (A)
 and (B). Thus merely assume that t satisfies properties (A) and (B) such that the treatment

 contrasts are identifiable, and denote its C-matrix by C. Since trace NkAk -N, equals bk/nk,
 the formula (4) yields

 " b
 trace C = 1 + (m - 1)r'r - -k (8)

 k=l nk

 In order to show that this is maximal we apply the necessary and sufficient condition (3)
 of Pukelsheim (1983a).

 Identifiability entails C+C = Kv. For M(t) choose the generalized inverse

 C -C+N A - G2 A- Gm
 -A'NC A+ + A N'CNA Gl2 "'" Gim
 G G1 G1'2 G22 G G2m , (9)

 G'G' Gm G'm Gmm
 where for k 1, k, 1 = 2, ... m,

 Gk = -C+Nk(Ak -Jb),

 k - -1 _ k Gkk Jbk (Ak -Jb)NkCNk(Ak - Jbk),
 Gkl = (As' - Jbk)NkC+Nk(Ai - Jb).

 We then obtain C[Kv: 0]G = Kv[Iv: V1 : : Vm] = Kv[Iv: V], say, with V, = -NA-'
 and with Vk = krl - N kA-I for k ? 2. Now for every competing design -q with moment
 matrix

 we must evaluate, with K = [K,: 0]',

 trace CK'GAGKC = 1 + 2 trace VW' + trace VEV';

 see (3) in Pukelsheim (1983a). If a has variety-factor marginals Wk whose support is
 contained in Sk, block marginals equal to sk, and variety marginals t, then lengthy but
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 straightforward computation leads to 2traceVW' = 2(m - 1)r't - 2 1 bk/nk, and
 trace VEV' = (trace ) - (m - 1)r'r + E bk/nk, where

 = ~ (rlk - kA-1)Wki(rlb- NA-')'. (10)
 k+t

 Now if t = r or r = l~, then r't = r'r, and in view of (8) we obtain

 trace CK' GAGKC = trace C + trace ?.

 Finally, if lq has factor-factor marginals Wkl = SkSl, then trace vanishes because

 (rl'k - NkAk )Sk = 0. The necessary and sufficient condition for trace optimality thus
 is verified. Q.E.D.

 As in one-way settings (Pukelsheim 1983a, p. 207) an AYD t with uniform factor
 marginals will be seen to be optimal even for a certain maximal parameter system. Indeed,

 the matrix G from (9) is a symmetric and reflexive generalized inverse of the moment
 matrix M of (, and the rank of M is maximal. Define the matrix K(() = MGD, with D

 = Blockdiag[I,: b ll/2b, ..: : bml/21bn]. Then K(()'p is a maximal parameter system for
 which we have the following optimality result.

 THEOREM 6. An AYD t with variety-factor support sets S1, ... , Sm and uniform factor
 marginals is p-mean optimalfor the maximal parameter system K(t)' P, simultaneously for
 all p E [-oo, +1 I], among the designs -q whose variety-factor support sets are contained
 in SI, .. , Sm and whose factor-factor marginals are uniform.

 Proof. Evidently K(()'M-K(() = DGD = B, say, and B has a representation V, + V2 +
 pV3 + V4, where

 Kv O 0 -KvZ 0 0 0 0

 V, = , V2 - , V3 =L , V4 1
 0 -Z'K 0 0 U 0 Z'KZ

 with Z = [b/2N : ... b/2Nm] and U = Blockidag[Ibt: Kb : ...: Kbm]. Since
 V, ... , V4 span a four-dimensional quadratic subspace of symmetric matrices, we may
 argue as in the proof of Theorem 7 of Pukelsheim (1983a). Fix t > 0. For every competing

 design lq we must verify traceM(lq)D-'B'+ 'D-' - trace pB'. But lq has variety-factor support sets contained in Sk, whence for some d,, > 0 we obtain

 traceM(lq)D-'Bt'D-' = ptraceB' + dt+ traceZ.

 Since qr has uniform factor-factor marginals, we obtain trace ? = 0, and the proof is
 complete. Q.E.D.

 The question arises whether we can do away with demanding uniform factor-factor
 marginals. The answer is in the negative: Let 5 be an AYD with uniform factor marginals.
 We may use its variety-factor marginals N,. ... , Nm to construct a feasible competitor 'r
 according to

 m Nk k
 TJ(i,ji, .. . ,jm) = ri H Nk(ijk)

 k= 1 ri

 The factor-factor marginals of rl are Wkl = vN'N1. The necessary and sufficient condition
 for optimality of ( will be violated when the trace of $ from (10) is positive. But
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 = v E HkH,, with Hk = N k 'N, - 1,i. ktl

 Here Hk - 0, by (6), and so trace HkHI - 0. This shows that trace _ 0 and that trace $ vanishes if and only if HkHI = 0 for all k + 1. But HkH, = 0 is equivalent to
 N,,FkN-NAI = Jl/v3, and taking ranks, this entails v = 1. Thus with the trivial
 exception of a single variety, an AYD ( with uniform factor marginals fails to be trace-
 optimal for the variety contrasts, among the designs whose variety-factor support sets are
 contained in those of t.

 Which design is optimal if not an AYD? This question is resolved in Pukelsheim and
 Titterington (1986b). The point is to move towards a maximal dependence structure
 between factor-factor marginals, thereby increasing information on the parameters of
 interest at the cost of having fewer nuisance parameters identifiable.
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