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Abstract

This work is concerned with the existence problem for biproportional multi- plier
methods. Given a problem and its underlying biproportional multiplier method,
we determine a necessary and sufficient condition for a feasible apportionment to
exist. In the case of nonexistence of a solution, we establish a procedure to define
a set of parties and a set of districts, denying a feasible allotment. Imposing
further restrictions on the problems, we derive some information about the
properties of these sets. Based on graph theoretic considerations, we formulate
an efficient algorithm to establish existence and comment on its implementation
in Java.
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Chapter 1

Introduction

Democratic elections are either based on majority voting, or on proportional
representation. In the case of majority voting, the applicant with the relative or
absolute majority of votes is elected. Proportional representation aims to por-
tray the political views of the electorate within the parliament, such that each
applicant is allotted the number of seats proportional to its share of votes.1

Diverse variations of electoral systems emerge, based on one of the above men-
tioned ideas, or representing a combination of both. In this thesis, we focus on
multiplier methods for proportional representation systems.
A biproportional multiplier method, as given for example within the New Zurich
apportionment method2, is subject to the apportionment of a certain number
of seats among both parties and districts, such that every seat is allotted to one
party and to one district. The assigned number of seats, and thus the appor-
tionment, is always integer valued. The apportionment underlies both weights,
given as the result of an election, and prespecified marginal constraints. The
weights are represented in a weight matrix, where the entry in row i and column
j specifies the weight of party j in district i. The apportionment is to reflect
the weights of each party per district in a proportional way. At the same time,
each district and each party is assigned a certain number of seats, denoted as
the marginal constraints, that have to be met with the allotment. The district
magnitude often is prescribed by law, whereas the number of seats for each
party is the result of a superapportionment due to the votes. The following
work is concerned with a graph theoretic approach to establish existence for
biproportional multiplier methods.
Checking upon the customary condition for a feasible apportionment as given
by Bacharach3 is inefficient, especially for big problems. Hence, we take an al-
ternative approach as suggested by Balinski and Demange4, by transforming the
problem into a network and solving a maximum flow problem. The maximum
flow value establishes existence or nonexistence. In the case of nonexistence, we

1See Schmidt and Seidel [13] on page 34 and 35.
2For details see Pukelsheim and Schuhmacher [11].
3See [3] on page 51.
4See [5] on page 707.
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Chapter 1 - Introduction 6

use cuts to determine a set of parties and a set of districts, that are responsible
for the failure.
In the end, we summarize this procedure and formulate it as an algorithm, which
is implemented in Java5.

5The program is a subroutine for the BAZI program [14] by Prof. Dr. Friedrich Pukelsheim
and the BAZI team, university Augsburg, which calculates, if possible, the apportionment for
various apportionment methods.



Chapter 2

Biproportional
apportionment problems

Section 1 and 2 provide definitions of biproportional problems and multiplier
methods. In section 3 and 4 we establish a necessary and sufficient condition
for the existence of a feasible apportionment to a biproportional problem, dis-
tinguishing between different kinds of multiplier methods.

2.1 Biproportional problems

We assume that there are k districts, where the electors can choose between l
parties of their favor. The number of seats, which are to be assigned, is some
positive integer valued number h, as for ’house size’. The weight for each party
j in district i is denoted by wij and represented in the weight matrix W ∈ Rk×l.
Denote the marginal district magnitude for district i = 1, . . . , k with ri ∈ N0

and the number of seats for party j = 1, . . . , l with cj ∈ N0. This is conformed
with the matrix terminology, where rows represent districts and columns stand
for parties. The marginal constraints both for parties and districts must sum
up to h. Further on, we assume, that all entries of W are nonnegative and there
are no rows or columns of zeros in W .
For notational reasons, denote the row sum over all entries in matrix W in row i
by

wi+ :=
l∑

j=1

wij .

Similarly w+j denotes the sum over all entries in column j. For any subset
J ⊂ {1, . . . , l} we define the sum over all entries in matrix W in row i and
column j, with j ∈ J , as follows

wiJ :=
∑

jεJ

wij .

7



Chapter 2 - Biproportional apportionment problems 8

The same notation will be used for any subset I ⊂ {1, . . . , k}, to get the sum
over all entries in column j and row i, with i ∈ I. Summation over an empty
set is defined to be zero.

Definition 2.1.1 A pair (W,σ), consisting of a weight matrix W = (wij) ≥ 0,
i ≤ k, j ≤ l, with nonzero columns and rows and a nonnegative vector σ = (r, c)
with r = (ri) ∈ Nk

0 , i ≤ k , c = (cj) ∈ Nl
0, j ≤ l, where c+ = r+, is called

problem.

Definition 2.1.2 Let σ = (r, c) with r = (ri) ∈ Nk
0 , i ≤ k and c = (cj) ∈ Nl

0,
j ≤ l. The region of allocation R(σ) is defined as

R(σ) := {a = (aij) ≥ 0 : ai+ = ri, i ≤ k, a+j = cj , j ≤ l, aij ∈ N0}.

R(σ) contains all matrices with nonnegative integer valued entries, that fulfill
the marginal constraints, given by the vector σ. If any feasible apportionment
exists, it will be a nonempty subset of R(σ).1

A central role within the apportionment play the scaling methods, which are
tightly connected to rounding functions. Thus, we first take a closer look on the
last ones, before turning to the multiplier methods.

2.2 Scaling methods

As a prerequisite for scaling methods, we turn our attention to the rounding of
numbers. For this reason, take [·]s to be a rounding function, where a positive
number x ∈ [n, n + 1], n ∈ N0, is mapped due to a dividing point s(n) in the
interval [n, n+1] either to the smallest integer larger than x, if x > s(n), or to the
largest integer smaller than x, if x < s(n). In the case of a tie, x = s(n), x can
be either rounded up or down2. The set of dividing points s(n) is called signpost
sequence as proposed by Balinski and Young3 and used for the definition of the
s-rounding as given in Balinski and Demange4.

Definition 2.2.1 Define the signpost sequence s as a strictly increasing
function over the nonnegative integers, such that s(n) ∈ [n, n+1] for all n ∈ N0

and there exist no integer valued numbers a ≥ 1 and b ≥ 0, such that s(a) = a
and s(b) = b + 1.

We define s(-1):=0 to state the following definition.
1See Balinski and Demange [5] on page 701.
2See Pukelsheim [12].
3See [6] on page 62.
4See [5] on page 711.



Chapter 2 - Biproportional apportionment problems 9

Definition 2.2.2 Let s be a signpost sequence. Define the s-rounding [·]s
according to s as an integer-valued function, such that for any x ≥ 0 and n ∈ N0:

[x]s =






n, if s(n − 1) < x < s(n),
n or n + 1, if x = s(n),
0, if x=0 .

Often, simple rounding of the given data does not suffice to get a feasible ap-
portionment. Thus, the data must be scaled beforehand. For an example see
the vector z = (1.6, 2.1, 4.3, 5.3), each component representing the share of
one party. To apportion six seats among the four parties in a proportional
way, using standard rounding, the vector has to be multiplied with a number
µ ∈ [0.35, 0.47], so that the scaled data, when rounded, add up to six. Notice
that for notational reason the given interval was shortened and does not specify
the whole scope of possible multipliers. Take µ = 0.4, to get the scaled vector
µz = (0.64, 0.84, 1.72, 2.12) and its associated rounded version (1, 1, 2, 2) with
s(n) = n + 1/2. Now, the components of the rounded version add up to six
and thus represent a feasible apportionment. This leads to the definition of a
multiplier method of rounding vectors, as presented by Balinski and Rachev5,
given h as the number of seats to be apportioned and z as the weight vector.

Definition 2.2.3 Let h be a positive integer and z ∈ Rk, with zi ≥ 0, i ≤ k.
The multiplier method of rounding vectors, based on the signpost sequence s
for (z, h) is defined as

As(z, h) = {a = (ai), i ≤ k : ai = [µzi]s, µ > 0 and a+ = h}.

In the biproportional case, given a weight matrix W ∈ Rk×l, two positive mul-
tipliers λ ∈ Rk and ρ ∈ Rl have to be specified, which scale the weights row and
column-wise, before rounding.6

Definition 2.2.4 Let the pair (W,σ) be a problem. The biproportional mul-
tiplier method of rounding matrices based on the signpost sequence s for (W,σ)
is defined as

As(W,σ) = {a = (aij) ∈ R(σ), i ≤ k, j ≤ l : aij = [λiwijρj ]s for λ, ρ > 0}.

A multiplier method with its associated signpost sequence s, is called imper-
vious, if s(0) = 0 and pervious, if s(0) > 0.7 In the first case every positive
weight, as small as it may be, is rewarded at least one seat, whereas in the
second case positive weight of a party does not guarantee a positive apportion-
ment. This is the case, if the multiplier is small enough, so that the scaled weight

5See [7] on page 4.
6See Balinski and Rachev [7] on page 19.
7See Pukelsheim [12].
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gets smaller than s(0). Henceforth, we assume for impervious scaling methods
the number of positive weights within the weight matrix W to be less than or
equal to h. To establish existence of a solution to a biproportional apportion-
ment problem, it is important, wether the used scaling method is pervious or
impervious.

2.3 Existence for pervious multiplier

methods

With the existence of a solution of an apportionment to the problem (W,σ)
based on s, we mean the nonemptyness of the set As(W,σ). Thus, we have to
find a necessary and sufficient condition, for As(W,σ) to be nonempty. For this
reason define R0(W,σ) as follows

R0(W,σ) := { a ε R(σ) : wij = 0 ⇒ aij = 0}

The set R0(W,σ) consists of all matrices, that both fulfill the marginal row and
column constraints and are compatible with the weight matrix W , such that all
zeros of W are preserved.8

Theorem 2.3.1 Let (W,σ) be a problem and s a pervious signpost sequence.
As(W,σ) is nonempty if and only if R0(W,σ) is nonempty.

Proof. The theorem is proofed constructively by an algorithm and presented
in the appendix A.

Now we can derive a condition for the existence of a solution of (W,σ), dependent
on the set R0(W,σ).

Theorem 2.3.2 The set R0(W,σ) is nonempty if and only if
{

cJ ≥ rI

for any I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} with wIJ = 0.
(2.3.1)

Proof. The proof will be established in section 5.2.

Assume that all entries of the weight matrix are positive. In this case condition
(2.3.1) holds. Set I = ∅ or J = ∅ to get wIJ = 0. Thus, we either have
cJ ≥ rI = 0 or h = cJ ≥ rI . This leads to the following proposition.

Proposition 2.3.1 Let (W,σ) be a problem and the underlying multiplier method
be pervious. If W is strictly positive, then As(W,σ) is nonempty.

8See Balinski and Demange [5] on page 707.
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2.4 Existence for impervious multiplier

methods

To establish existence in the case of impervious multiplier methods we define
the support matrix e = (eij), i ≤ k and j ≤ l, to the corresponding weight
matrix W as

eij =
{

0, if wij = 0,
1, otherwise.

Summation over row i of matrix e leads to the number of parties with positive
weight in district i of the corresponding weight matrix W and thus to a lower
bound for the seats, which are to be apportioned to district i. An apportionment
can only be found, if the marginal constraint for district i, denoted by ri, is larger
than or equal to ei+. Thus, we only regard weight matrices, which satisfy this
necessary condition. Similarly, we assume that e+j ≤ cj .
Given a problem (W,σ), we define the set

R1(W,σ) := { a ∈ R0(W,σ) : wij > 0 ⇒ aij ≥ 1}

as a subset of R0(σ), such that the number of apportioned seats aij is larger
than or equal to one if and only if party j has positive weight in district i.9

Theorem 2.4.1 Let (W,σ) be a problem and the given multiplier method be
impervious. As(W,σ) is nonempty if and only if R1(W,σ) is nonempty.

Proof. The theorem is proofed constructively by an algorithm and presented
in the appendix A.

Similar to the case of pervious multiplier methods, we can find a necessary and
sufficient condition for R1(W,σ) to be nonempty.

Theorem 2.4.2 The set R1(W,σ) is nonempty if and only if
{

cJ ≥ rI + eIJ

for any I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} with wIJ = 0.
(2.4.1)

Proof. The proof will be established in section 5.2.

Again, assume all weights in the weight matrix W to be strictly positive. For
I = ∅ or J = ∅, with wIJ = 0, condition (2.4.1) becomes either cJ ≥ rI +
eIJ ≥ 0 + cJ or h = cJ ≥ rI + eIJ ≥ rI + rI = h, since we assumed that
ei+ ≤ ri , for all i ≤ k and e+j ≤ cj , for all j ≤ l.

9See Balinski and Demange [5] on page 712.
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Proposition 2.4.1 Let (W,σ) be a problem and the underlying multiplier method
be impervious. If W is strictly positive, then As(W,σ) is nonempty.

Instead of verifying condition (2.3.1) and (2.4.1), we take an alternative graph
theoretic approach. The strategy is as follows: The given problem (W,σ) is
transformed into a network due to its underlying multiplier method. After
that, a maximum flow problem has to be solved to establish existence. Thus,
the following two chapters provide graph theoretic basics, which are needed for
further considerations.



Chapter 3

Flows and cuts in networks

Section 1 is concerned with the introduction of basic notations and definitions
of network theory. The concept of maximum flow problems is discussed in de-
tail. In section 2 the fundamental max-flow min-cut theorem is established and
the connections to primal and dual problem drawn. The last section provides
information about the propoerties of cuts.

3.1 Maximum flow problem

Let G = (V,A) be a network, consisting of a set V of n nodes and a set A
of m arcs, with m,n ∈ N. Each arc (i, j) in the network is directed and thus
carrying a specific orientation. Flow on arc (i, j) can only be sent from node
i to node j. Furthermore, the nonnegative flow on each arc (i, j) is restricted
by some finite arc capacity uij . Henceforth, assume that uij is integer val-
ued. Two nodes s and t ∈ V are denoted as source and sink, respectively.
Without loss of generality, no parallel arcs are admitted. Figure 3.1 presents
the directed and capacitated network G = (V,A) with V = {s, 1, 2, 3, 4, 5, t},
A = {(s, 1), (s, 2), (s, 3), (1, 4), (1, 5), (2, 5), (3, 5), (4, t), (5, t)}, and the capacities
u = (us,1, us,2, us,3, . . . , u5,t) = (3, 3, 1, 7, 7, 7, 7, 4, 3). All capacities are written
above their affiliated arcs. This network will be used for further examples in
this work.

The maximum flow problem seeks for the maximal flow from the source node
s to the sink node t through the given network G. Any flow x = (xij), with
(i, j) ∈ A, must satisfy both the flow bound and the mass balance constraint.
That is:

1. 0 ≤ xij ≤ uij , ∀ (i, j) ∈ A (flow bound constraint)

2.
∑

(i,j)∈δ+(i) xij −
∑

(j,i)∈δ−(i) xji = 0, ∀ i ∈ V \ {s, t} (mass balance
constraint)

where δ+(i) denotes the set of arcs emanating from node i. Similarly, δ−(i) is

13
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3

Figure 3.1:

Directed and capacitated network G.

the set of all arcs ending in node i1. The flow value v(x) is given by

v(x) =
∑

(i,j)∈δ+(s)

xij −
∑

(i,j)∈δ−(s)

xij .

The residual network is a central point within most algorithm to solve maxi-
mum flow problems. It represents the network with its residual capacities, given
a feasible flow x. Since many maximum flow algorithms establish the solution,
if possible, by increasing the flow value incrementally, the residual network is
favored at intermediate steps.
The following considerations about residual networks are based on the work by
Ahuja, Magnanti and Orlin2. Given a feasible flow x = (xij) in the original
network G, each arc (i, j) is carrying xij units of flow. Further flow on the arc
(i, j) is restricted by the residual capacity uij - xij . On the other hand, given
the flow xij on arc (i, j), it can be decreased, or in other words, can be sent back
from node j to node i along arc (i, j). Based on this observation the residual
network G(x), given the feasible flow x, is defined as follows.
For any arc (i, j) in the original network with positive flow, xij > 0, insert in the
residual network G(x) two arcs (i, j) and (j, i), having capacity uij−xij and xij ,
respectively. Observe that only arcs with nonnegative capacity appear, since the
flow x was assumed to be feasible, that is, nonnegative and satisfying the flow
bound constraints. Ambiguity could arise by this construction as to parallel
arcs. Without loss of generality, those two arcs are to be merged into one, while
adding their capacities. The updated capacities in the residual network are
denoted by r as for ’residual’.
To see that there is a one-to-one correspondence between flows in the original
network G and flows in the residual network G(x∗), let x be a feasible flow in
G. It has to be shown that x corresponds to a feasible flow x′ in the residual
network G(x∗). Thus, define x′ ≥ 0 as

1See Borgwarth [8] on page 411.
2See [1] on page 44 to 46.
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Figure 3.2:

The residual network G(x∗), with G as in figure 3.1 and x∗ = (3, 0, 0, 3, 0, 0, 0, 3, 0).

x′
ij − x′

ji = xij − x∗
ij and

x′
ijx

′
ji = 0.

This is,
x′

ij = xij − x∗
ij and x′

ji = 0, if xij ≥ x∗
ij ,

x′
ji = x∗

ij − xij and x′
ij = 0, otherwise.

In both cases the nonnegative flow x′ satisfies the flow bound constraint of the
residual network G(x∗). Since x is a feasible flow in G, 0 ≤ xij ≤ uij :
0 ≤ x′

ij ≤ uij − x∗
ij = rij , if xij ≥ x∗

ij

0 ≤ x′
ji ≤ x∗

ij = rji, otherwise.
Similarly, any feasible flow x′ of the residual network G(x∗) corresponds to a
feasible flow x given by xij = (x′

ij − x′
ji) + x∗

ij in the original network G. Due
to the feasibility of x′, we have x′

ji ≤ x∗
ij and x′

ij ≤ uij − x∗
ij . Thus,

0 ≤ xij = x∗
ij − x′

ji ≤ x∗
ij ≤ uij , if x′

ij = 0 and
0 ≤ xij = x′

ij + x∗
ij ≤ uij − x∗

ij + x∗
ij = uij , if x′

ji = 0.

This established the following theorem.

Theorem 3.1.1 A flow x is a feasible flow in the network G if and only if its
corresponding flow x′, defined by x′

ij −x′
ji = xij −x∗

ij and x′
ijx

′
ji = 0, is feasible

in the residual network G(x∗).

Figure 3.2 shows the residual network G(x∗), given the network G of figure 3.1
and the feasible flow x∗ = (x∗

s,1, x
∗
s,2, x

∗
s,3, . . . , x

∗
5,t) = (3, 0, 0, 3, 0, 0, 0, 3, 0) with

flow of three units on the arcs (s, 1), (1, 4) and (4, t). The capacities of the above
mentioned arcs are reduced by their flow value of three units. At the same time,
arcs with opposite orientation (1, s), (4, 1) and (t, 4) are inserted, carrying the
capacity of the previously withdrawn flow value. Notice that arc (s, 1) vanishes
due to its new upper capacity of zero.
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Figure 3.3:

Cut δ(S) = {(s, 1), (1, 5), (5, t)}, consisting of the sets δ+(S) = {(s, 1), (5, t)} and
δ−(S) = {(1, 5)} for S = {s, 2, 3, 5} .

Maximum flows are tightly connected with a special class of cuts. The next sec-
tion provides some basics of the concept of cuts and establishes the fundamental
max-flow min-cut theorem.

3.2 Max-flow min-cut theorem

If we turn back to the existence problem, this section is important in consider-
ation of determining a set of parties and a set of districts, violating the relevant
conditions in the case of nonexistence of a solution.

Definition 3.2.1 Let S be a subset of V in the network G = (V,A) and S its
complement. The set of arcs between S and S is called cut and denoted by δ(S).
It contains the set of arcs leading out of S, δ+(S) := {(i, j) ∈ A | i ∈ S, j ∈ S},
and the set of arcs leading into S, δ−(S) := {(i, j) ∈ A | j ∈ S, i ∈ S}.

See in figure 3.3 an example of the cut δ(S) in the network G of figure 3.1, with
S = {s, 2, 3, 5}.

Definition 3.2.2 A cut δ(S) is called s-t separating cut if the source node
s is contained in S and the sink node t is an element of S.

The cut of figure 3.3 illustrates an s-t separating cut since s ∈ S = {s, 2, 3, 5}
and t ∈ S = {1, 4, t}.

Definition 3.2.3 The cut capacity u(S) of an s-t separating cut δ(S) is
defined as the sum over all upper capacities of arcs in δ+(S),

u(S) :=
∑

(i,j)∈δ+(S)

uij .
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In the case of the example in figure 3.3, the cut capacity of δ(S) equals us,1 +
u5,t = 3 + 3 = 6.

Definition 3.2.4 An s-t separating cut with minimum cut capacity among all
s-t cuts is called minimum cut.

Figure 3.3 presents the minimum cut δ(S), since for any other set S′ ⊆ V \ {t},
u(S) ≤ u(S′).

The interplay between flow values and cut capacities states the following theo-
rem.

Theorem 3.2.1 For any flow x in a capacitated network from the source node
s to the sink node t and any s-t separating cut δ(S) the following holds:

v(x) ≤ u(S).

Proof. Let x be a feasible flow from s to t with flow value v(x) and δ(S) an
s-t separating cut, with S ⊂ V . Flow x satisfies the following equations:
∑

(i,j)∈δ+(s) xij −
∑

(i,j)∈δ−(s) xij = v(x)∑
(i,j)∈δ+(v) xij −

∑
(i,j)∈δ−(v) xij = 0, ∀ v ∈ V \ {s, t}∑

(i,j)∈δ+(t) xij −
∑

(i,j)∈δ−(t) xij = −v(x)

Sum over all n ∈ S to get:

v(x) =
∑

(i,j)∈δ+(s)

xij −
∑

(i,j)∈δ−(s)

xij =
∑

n∈S

(
∑

(i,j)∈δ+(n)

xij −
∑

(i,j)∈δ−(n)

xij )

Since any arc (i, j) with i, j ∈ S occurs twice in this equation, once negative and
once positive, it can be reduced to summing up over all arcs (i, j) with either
i ∈ S and j ∈ S or i ∈ S and j ∈ S. Recall that this is the set of arcs in δ+(S)
and δ−(S). In addition, xij ≤ uij , since the flow x was assumed to be feasible.
Thus,

v(x) =
∑

(i,j)∈δ+(S)

xij −
∑

(i,j)∈δ−(S)

xij ≤
∑

(i,j)∈δ+(S)

uij −
∑

(i,j)∈δ−(S)

uij ≤ u(S).3

A fundamental result in network theory yields that even equality holds for the
maximum flow value and the minimum cut capacity.

Theorem 3.2.2 (Max-flow min-cut theorem) For any capacitated network the
maximum flow value from the source node s to the sink node t is equal to the
minimum capacity of all s-t separating cuts.

3See Ford and Fulkerson [9] on page 10 and 11.
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Proof. With the result of theorem 3.2.1, it suffices to establish the existence of
a flow x and an s-t separating cut δ(S), such that v(x) = u(S). A maximum flow
exists, since the set of all feasible flows is compact, the capacities are bounded
and there is at least one feasible flow, the null flow.
Let x be the maximum flow with

v(x) =
∑

(i,j)∈δ+(s) xij −
∑

(i,j)∈δ−(s) xij

and define the set S, based on the flow x, recursively as follows:

1. s ∈ S

2. if i ∈ S and xij < uij , then add j to S,
if i ∈ S and xji > 0, then add j to S.

Observe, that node t must be in S, since x is defined maximum. Assume t
is contained in S, we can find a directed path P from s to t, such that for
any forward arc (i, j) on path P , the flow value does not exhaust the upper
capacity, xij < uij , and for any backward arc (i, j) on P , the flow value is
positive, xij > 0. Take ε := min{rij : (i, j) ∈ P} to be the residual capacity
of path P . ε is positive, so that x cannot be a maximum flow. Consequently,
t ∈ S and δ(S) defines an s-t separating cut. By construction, it follows, that
every arc (i, j), leaving S, is saturated, whereas arcs (i, j), leading into S, do
not carry any flow:

∑
(i,j)∈δ+(S) xij = u(S) and∑
(i,j)∈δ−(S) xij = 0

Now we have established the existence of a flow x and an s-t separating cut
δ(S), for which equality of the flow value and the cut capacity hold. With the
fact, that the flow value is bounded from above by any cut capacity, the proof
is finished.4

The max-flow min-cut theorem treats a special case of the duality theorem5,
which states the interplay between the solutions of the primal maximization
and its associated dual minimization problem or vice versa.
Since the maximum flow problem is about the maximization of a linear function
under given linear constraints, we formulate it as linear programming problem.

(LP) maximize v(x) =
∑

(i,j)∈δ+(s) xij −
∑

(i,j)∈δ−(s) xij under the linear con-
straints,

∑
(i,j)∈δ+(i) xij −

∑
(j,i)∈δ−(i) xji, ∀ i ∈ V \ {s, t}

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A

Herewith we can associate its dual problem, which can be generated by trans-
forming the primal one. For the transformation rules see Borgwarth6. We get
the dual problem:

4See Ford and Fulkerson [9] on page 11 and 12.
5For details see Borgwarth [8] on page 69.
6See [8] on page 459.
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(DP) minimize
∑

(i,j)∈A uijyij under the linear constraints,

yij ≥ 0, ∀ (i, j) ∈ A

yij + zi − zj ≥ 0, ∀ (i, j) ∈ A

zs = −1

zt = 0

The maximum flow and thus the linear programming problem always has an
optimal solution. Due to the duality theorem the dual problem has an optimal
solution, where the minimum value is equal to the maximum value of the primal
one. This is exactly what the max-flow min-cut theorem provides, with the dual
problem corresponding to the minimum cut problem. Indeed, the optimal solu-

tion
(

y
z

)
of the dual problem can be converted into a minimum s-t separating

cut δ(S) with cut capacity u(S) =
∑

(i,j)∈A uijyij .7

3.3 Properties of cuts

For the following considerations see Ford and Fulkerson8.

Theorem 3.3.1 Let δ(S′) be a minimum cut in the network G and let δ(S)
be the minimum cut, based on the maximum flow x, as defined in the proof of
theorem 3.2.2. Then S ⊆ S′.

To proof theorem 3.3.1 we need the following corollaries.

The minimality of cuts can also be formulated regarding selected sets of arcs
and the realized flow upon.

Corollary 3.3.1 A cut δ(S) is minimum if and only if every maximum flow
x saturates all arcs of δ+(S) and has zero flow on all arcs of δ−(S).

Proof. Let δ(S) be a minimum cut and assume the flow x is maximum,
such that v(x) = u(S). If there is any arc (i, j) ∈ δ+(S), with xij < uij , or
(i, j) ∈ δ−(S), with xij > 0, then v(x) < u(S). Thus, x cannot be maximum
due to theorem 3.2.2 on page 17. On the other hand, take S ⊂ V , such that
δ(S) defines an s-t separating cut. If x is a maximum flow, with xij = uij for
all arcs (i, j) ∈ δ+(S) and xij = 0 for all arcs (i, j) ∈ δ−(S), then v(x) = u(S)
and thus δ(S) must be a minimum cut.

Corollary 3.3.2 Let δ(S) and δ(C) be minimum cuts. Then δ(S ∩ C) is also
a minimum cut.

7See Ford and Fulkerson [9] on page 26 to 30 and Borgwarth [8] on page 458 to 460.
8See [9] on page 13 and 14.
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Proof. We have to show that for every maximum flow x any arc emanating
δ(S ∩C) is saturated and any arc leading into it has zero flow. Take arc (i, j) ∈
δ+(S ∩ C), such that i ∈ (S ∩ C) and j ∈ (S ∪ C). We find, i ∈ S and i ∈ C
and j ∈ S and/or j ∈ C. If j ∈ S, then xij = uij , since δ(S) was defined to
be minimum. If j ∈ C, then xij = uij , since δ(C) was defined to be minimum.
Use the same argumentation to show that any arc leading out of (S ∪ C) has
zero flow.

Proof of theorem 3.3.1. Assume that S ,⊆ S′, then there is some i ∈ S, with
i /∈ (S ∩ S′). Notice that δ(S ∩ S′) defines a minimum cut. Since i ,= s, we
can find a path P from s to i, such that, by definition, every forward arc on
P is not saturated and every backward arc on P has positive flow. We define
arc (i, j) ∈ P as forward arc, if it is used via its true orientation, otherwise
it is defined as backward arc. Since s ∈ (S ∩ S′) and i ∈ (S ∩ S′), there are
two following nodes ik ∈ (S ∩ S′) and ik+1 ∈ (S ∩ S′) on P . If (ik, ik+1)
is emanating (S ∩ S′), then flow on this arc is less than its upper capacity,
contradicting corollary 3.3.1 on page 19. If (ik, ik+1) is leading into (S ∩ S′),
we have positive flow, again contradicting corollary 3.3.1. Thus, S ⊂ S′. This
proofs theorem 3.3.1 on page 19.

Let x be a maximum flow. Similar to the defined set S as in the proof of theorem
3.2.2 on page 18, define the set S′, and thus the minimum cut δ(S′), based on
x as follows:

1. t ∈ S′

2. if j ∈ S′ and xij < uij , then add i to S′,
if j ∈ S′ and xji > 0, then add i to S′.

Theorem 3.3.2 Let S be defined as in the proof of theorem 3.2.2 and S′ as the
complement of the previously defined set S′. If the upper capacities are strictly
positive, then the minimum cut δ(S) is unique if and only if δ(S) = δ(S′).

Proof. Let δ(C) be a minimum cut. We have to show that, if δ(S) = δ(S′),
then δ(S) = δ(C). If δ(S) = δ(S′), then both equal the set AS,S′ := {(i, j) :
i ∈ S and j ∈ S′}, since, due to theorem 3.3.1 on page 19, S ⊆ S′ and thus
AS,S′ ⊆ δ(S′) and for any arc (i, j) ∈ δ(S) = δ(S′), i ∈ S and j ∈ S′, such that
(i, j) ∈ AS,S′ .
For δ(C), we get by theorem 3.3.1 on page 19, S ⊆ C and S′ ⊆ C. Thus,
δ(S) = AS,S′ ⊆ {(i, j) : i ∈ C and j ∈ S′} ⊆ {(i, j) : i ∈ C and j ∈ C} = δ(C)
and therefore u(S) ≤ u(C). If δ(S) is a real subset of δ(C), then either some
arcs in δ(C) have zero capacity, contradicting our assumption of strictly positive
upper capacity bounds, or u(S) < u(C), contradicting the assumption of the
minimality of δ(C). Thus, δ(S) = δ(C).
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Solving maximum flow
problems

Section 1 presents the basic idea of the generic augmenting path algorithm to
solve maximum flow problems. Section 2 describes the Labelling algorithm, a
special implementation of the generic augmenting path algorithm, followed by
the pseudo-code, the proof of correctness and the complexity, in section 3 to 5.1

Section 6 provides an example.

4.1 Generic augmenting path algorithm

A methodology to solve maximum flow problems is provided by the generic
augmenting path algorithm. Throughout the algorithm the concept of directed
paths from the source node s to the sink node t in the residual network G(x), the
so-called augmenting paths, is of great importance. P is called an augmenting
path in the residual network G(x), for a feasible flow x, if for all arcs (i, j) ∈
P the residual capacity rij is positive. The residual capacity r(P ) of an
augmenting path P is defined as the minimal residual capacity rij of any arc
(i, j) on the path P

r(P ) = min{rij : (i, j) ∈ P}.

For an example of an augmenting path and its residual capacity in the network
G of the previous chapter see figure 4.1.
Notice that the residual capacity r(P ) is always positive. On every augmenting
path P further flow of r(P ) units can be sent from the source to the sink, so
that the absolute flow value increases by r(P ) units. Based on this observa-
tion, the algorithm can be partitioned into two subroutines, which are executed
alternately:

1. identifying an augmenting path P from s to t and

2. sending flow along P and updating the residual network (augmentation).
1For section 1 to 5 see Ahuja, Magnanti and Orlin [1] on page 180 to 186.

21
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Figure 4.1:

The augmenting path P : s → 2 → 5 → t in the network G . The residual capacity
r(P ) = min{rs,2, r2,5, r5,t} = 3.

The algorithm terminates, if no further augmenting path is contained in the
residual network and the actual flow value is returned. However, it does not
specify how to identify such a path. A special implementation of the generic
augmenting path algorithm is given by the Labelling algorithm and is described
in detail below.

4.2 Labelling algorithm

Given a network G = (V,A) with two nodes s, t ∈ V , defined as source and
sink, the algorithm uses a labelling process to identify any node in the residual
network, that can be reached from the source along a directed path. Starting
at the source node s, the algorithm labels all direct reachable neighbor nodes
in the residual network. This scanning process is done for every labelled node,
until either the sink node is labelled, too, or all labelled nodes are scanned
and the sink remains unlabelled. Is t labelled, an augmenting path was found.
After augmentation along that path, the labelling process starts again with
unlabelling all nodes. Otherwise the sink is not connected to the source and no
such path exists. The algorithm terminates and returns the actual flow, which
is maximum.

4.3 Pseudo-code

algorithm Labelling
begin

label node t
while t is labelled do
begin

unlabel all nodes;
set pred(i) := 0 ∀ i ∈ V ;
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label s and set LIST := {s};
while LIST,= ∅ and t unlabelled do
begin

remove a node i from LIST;
for each arc (i, j) in the residual

network emanating node i do
begin

if node j is unlabelled
then

set pred(j) := i;
label j and add j to LIST;

end;
end;
if t is labelled then

subroutine augment;
end;

end;

subroutine augment
begin

use the predecessor pred to trace back from the sink to the source
to obtain an augmenting path P from node s to t;
δ := min{rij : (i, j) ∈ P};
augment δ units of flow along P and update the residual
capacities;

end;

4.4 Correctness

To establish correctness, we have to show that the algorithm terminates within
finite steps and that the returned flow value at the end is maximum.

Theorem 4.4.1 (Augmenting path theorem) A flow x∗ is a maximum flow in
G(x∗) if and only if the residual network G(x∗) contains no augmenting path.

Proof. If the residual network G(x∗) contains an augmenting path, the flow
value can be increased by the residual capacity r(P ) of path P and x∗ cannot
be maximum. Conversely, if the residual network contains no augmenting path,
two sets S and S exist (actually they are determined by the algorithm), which
define an s-t cut δ(S), whose capacity equals the flow value of flow x∗. Since
the flow value of any flow is smaller than or equal to the capacity of any s-t cut,
x∗ must be maximum.

Since the algorithm terminates if no augmenting path can be found, the actual
flow must be maximum, according to the augmenting path theorem.
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To establish termination within finite steps, recall that all arc capacities were
assumed to be integer and finite. Therefore any residual capacity of an aug-
menting path is larger than or equal to one and each augmentation will increase
the absolute flow value by at least one. In each iteration the algorithm augments
along a directed path or in the last one, terminates if no such path was found.
Thus, the finite maximum flow value can be reached within a finite number of
iterations.

4.5 Complexity

Theorem 4.5.1 The Labelling algorithm solves the maximum flow problem
within O(nmU) time, where U denotes the maximum value among all arc ca-
pacities of the original network.

Proof. Recall that the network contains n nodes and m arcs. The Labelling
algorithm performs at each iteration either an augmentation or terminates, if
the source and sink are disconnected in the residual network G(x). However,
each iteration starts with the search of a directed path from s to t. In the worst
case every arc in G(x) has to be checked, so that in the end the search takes
O(m) time. Similarly, augmentation involves at most every arc in the network,
leading to the worst case complexity of O(m). Assuming that the integer valued
capacities are bounded from above by some finite value U , the maximum flow
value is at most nU . Since any augmentation carries at least one unit, the worst
case bound on the number of iterations is O(nU). This leads to the overall worst
case complexity of O(nmU).

4.6 Example

We take network G of the previous chapter and establish a maximum flow by
applying the Labelling algorithm. See figure 4.2 for the input network.
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Figure 4.2:

Network G, for which the maximum flow is determined.



Chapter 4 - Solving maximum flow problems 25

1.Iteration:
pred(i) = 0 ∀ i ∈ V
Labelled= {s};
List={s};
take node s:

List= ∅;
take arc (s,1):

pred(1) = s;
Labelled={s,1};
List= {1};

take arc (s,2):
pred(2) = s;
Labelled= {s, 1, 2};
List= {1, 2};

take arc (s,3):
pred(3) = s;
Labelled={s,1,2,3};
List= {1, 2, 3};

take node 1:
List= {2, 3};
take arc (1,4):

pred(4) = 1;
Labelled= {s, 1, 2, 3, 4};
List= {2, 3, 4};

take arc (1,5):
pred(5) = 1;
Labelled= {s, 1, 2, 3, 4, 5};
List= {2, 3, 4, 5};

take node 2:
List= {3, 4, 5};
take arc (2,5): –, since node 5 is labelled

take node 3:
List= {4, 5};
take arc (3,5): –, since node 5 is labelled

take node 4:
List= {5};
take arc (4,t):

pred(t) = 4;
Labelled= {s, 1, 2, 3, 4, 5, t};
List= {5, t};

node t is labelled:
augment:

P : t → 4 → 1 → s;
δ(P ) = min{3, 7, 4} = 3;
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Figure 4.3:

Residual network G(x), with x = (3, 0, 0, 3, 0, 0, 0, 3, 0).

realize augmentation of 3 units along P to get the residual
network in figure 4.3

2.Iteration:
pred(i) = 0 ∀ i ∈ V
Labelled= {s};
List= {s};
take node s:

List= ∅;
take arc (s, 2):

pred(2) = s;
Labelled= {s, 2};
List= {2};

take arc (s, 3):
pred(3) = s;
Labelled= {s, 2, 3};
List= {2, 3};

take node 2:
List= {3};
take arc (2, 5):

pred(5) = 2;
Labelled= {s, 2, 3, 5};
List= {3, 5};

take node 3:
List= {5};
take arc (3,5):–, since node 5 is labelled;

take node 5:
List= ∅;
take arc (5,t):

pred(t)=5;
Labelled={s, 2, 3, 5, t};
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Figure 4.4:

Residual network G(x), with x = (3, 3, 0, 3, 0, 3, 0, 3, 3).

List={t};
node t is labelled:
augment:

P = t → 5 → 2 → s;
δ(P ) = min{3, 7, 3} = 3;
realize augmentation of 3 units along P to get the residual
network in figure 4.4

3.Iteration:
pred(i) = 0 ∀ i ∈ V
Labelled= {s};
List= {s};
take node s:

List=∅;
take arc (s, 3):

pred(3) = s;
Labelled={s,3};
List={3};

take node 3: –
List= ∅;
take arc (3,5):

pred(5)=3;
Labelled={s,3,5};
List={5};

take node 5: –
List= ∅;
take arc (5,2):

pred(2)=5;
Labelled={s,3,5,2};
List={2};
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Figure 4.5:

Network G, with the determined maximum flow x = (3, 3, 0, 3, 0, 3, 0, 3, 3) and flow
value v(x) = 6.

take node 2:
List= ∅;
take arc (2,s):–, since node s is labelled

List is empty and node t is unlabelled:
The algorithm terminates with the maximum flow
x = (3, 3, 0, 3, 0, 3, 0, 3, 3) and flow value v(x) = 6.
See figure 4.5 for the realized flow, where the tuple y/z
above the arcs corresponds to upper capacity/flow value.
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Establishing existence by
means of network theory

To establish existence one might try to verify condition (2.3.1) or (2.4.1) on
page 10 and 11. This becomes inefficient, especially for big problems. As an
alternative approach to a solution of the existence problem, the biproportional
apportionment problem can be transformed into a capacitated network, which
is presented in section 1. Section 2 establishes the equivalence of feasibility
of a circulation within the constructed network to the existence of a feasible
apportionment and illustrates how to solve the feasibility problem. Section 3
derives a simple and efficient strategy to gain a statement about the existence
of a solution, using the results of section 2. In section 4 the complexity of the
procedure is determined.

5.1 Transformation of the problem into a

network

Let W denote the weight matrix and r and c the marginal constraint vectors for
the districts and parties. For a transformation due to Balinski and Demange1,
introduce a node for each party and each district and insert the directed arc
(i, j), starting in district node i and ending in party-node j, if and only if the
weight for party j in district i is strictly positive, that is, wij > 0. Define the
upper capacity bound uij of arc (i, j) to be h, the house size, and set the lower
capacity lij = 0, if s(0) > 0, and lij = 1, if s(0) = 0. The lower capacity reflects
the quality of the given multiplier method with its associated signpost sequence
s. If it is impervious, s(0) = 0, then each party with positive weight in some
district j is guaranteed at least one seat there.
Continue to add a source node s and arcs (s, i) emanating from node s to each
district node i = 1, . . . , k with lower and upper capacity equal to ri. Addition-
ally, adjunct a sink node t and arcs (j, t) from each party node j = 1, . . . , l to

1See [5] on page 707 and 713.

29
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D1 P1

s D2 t

D3 P2

(3, 3)

(3,3)

(1,1)

(0, 7)

(0, 7)
(0,7)

(0, 7)

(4, 4)

(3, 3)

(7,7)

Figure 5.1:

Generated network for the problem (W ∗, σ∗) with three districts, two parties and an
underlying pervious multiplier method.

the sink t with lower and upper capacity cj . In the end, insert arc (t, s) with
lower and upper capacity equal to the house size h.
See in figure 5.1 an example of this transformation according to the problem

(W ∗,σ∗), with W ∗ =




× ×
0 ×
0 ×



, where × denotes some positive number,

σ∗ = ((3, 3, 1), (4, 3)) and house size h = 7, for an underlying pervious mul-
tiplier method. The tuple (y, z) above any arc is to interpret as (lower capacity
bound, upper capacity bound). In the case of s(0) = 0, the lower capacity
bounds on arcs between district and party nodes are set to 1.

Flow on arcs between the source and a district node i or a party node j and the
sink corresponds to the total number of seats, allotted to district i or party j,
respectively. Flow on arcs between district node i and party node j represent the
number of allotted seats to party j in district i. The feasibility of a circulation
in the above constructed networks is equivalent to the nonemptyness of the sets
R0(W,σ) and R1(W,σ), respectively, since a feasible circulation represents an
element of the relevant set. As we will see in the next section, condition (2.3.1)
and (2.3.2) correspond to the necessary and sufficient condition for a feasible
circulation to exist. Moreover we can derive another existence criterion, which
can be checked more efficiently.

5.2 Feasibility of circulation

Let the given directed and capacitated network G = (V,A) be originated from
a problem (W,σ) and its underlying multiplier method. Let the lower and
upper capacity bound of arc (i, j) be denoted by lij and uij , respectively, where
0 ≤ lij ≤ uij . A feasible circulation x in G satisfies both the flow bound and
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Figure 5.2:

Transformation of network G into G∗.

mass balance constraint, such that

1. lij ≤ xij ≤ uij , ∀ (i, j) ∈ A (flow bound constraint)

2.
∑

(i,j)∈δ+(i) xij −
∑

(j,i)∈δ−(i) xji = 0, ∀ i ∈ V (mass balance constraint)

To solve the circulation problem, Ford and Fulkerson2 suggest the following
procedure. Adjunct two nodes s∗ and t∗ to V and arcs as follows to A to get
the extended network G∗ = (V ∗, A∗).
Add arc (s∗, i) for all nodes i in V , if b(i) > 0 and arc (i, t∗) for all nodes i in
V , if b(i) < 0 with

b(i) =
∑

j:(j,i)∈A

lji −
∑

j:(i,j)∈A

lij , ∀ i ∈ V.

Put the lower capacity at any arc in G∗ to zero and the upper capacity to

u∗
ij = uij − lij , for (i, j) ∈ A,

u∗
s∗i = b(i), for i ∈ V and (s∗, i) ∈ A∗,

u∗
it∗ = −b(i), for i ∈ V and (s∗, i) ∈ A∗.

See figure 5.2 for the transformation of the original network of figure 5.1 with
an underlying pervious multiplier method, where the dashed arcs have zero
capacity.

3

A feasible circulation x in G corresponds to a flow x∗ from s∗ to t∗ in G∗ by
putting

x∗
ij = xij − lij , for (i, j) ∈ A,

x∗
s∗i = b(i), for (s∗, i) ∈ A∗,

x∗
it∗ = −b(i), for (i, t∗) ∈ A∗.

2See [9] on page 50.
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Whenever there is a flow x∗ in G∗, saturating all arcs emanating s∗ and therefore
all arcs ending in t∗, a circulation in G exists. We can establish a necessary and
sufficient condition for a flow x∗ in G∗ to exist, with flow value v(x∗) larger than
or equal to h, if s(0) > 0, or h − e++, if s(0) = 0. By theorem 3.2.1 on page 17
any cut capacity must exceed or equal the demanded flow value. Let S∗ ⊆ V ∗

be a set of nodes, defining an s-t separating cut δ(S∗). Let S = S∗ \ {s∗} and
S = S∗ \ {t∗}. For the cut capacity of δ(S∗) see the following:

u(S∗) = u(S ∪ s∗) =
∑

(i,j)∈A∗,i∈S∪s∗,j∈S∪t∗

u∗
ij =

=
∑

(i,j)∈A, i∈S, j∈S

u∗
ij +

∑

(s∗,i)∈A∗,i∈S

u∗
s∗i +

∑

(i,t∗)∈A∗,i∈S

u∗
it∗ .

Further on, the nodes s and t are dropped from consideration, since they do not
contribute to any cut capacity due to their isolation.
In the pervious case, for S = ∅ the first and the last sum vanish, leaving the
middle term, which sums up to h. The same holds for S = V , the last term
sums up to h, whereas the rest becomes zero. In any other case, except that of
S = I ∪ J and S = I ∪ J where I ⊂ {1, . . . , k}, J ⊂ {1, . . . , l} and wIJ = 0,
the cut capacity gets larger than h, since all arcs between a district and a party
node carry upper capacity of h. Take S to be the union of any I and J with
wIJ = 0. The cut capacity gets

u(S∗) =
∑

(i,j)∈A, i∈S, j∈S

u∗
ij +

∑

(s∗,i)∈A∗,i∈S

u∗
s∗i +

∑

(i,t∗)∈A∗,i∈S

u∗
it∗

= 0 + (h − rI) + cJ .

Hence, a necessary and sufficient condition for the cut capacity to be larger than
or equal to h is, that for any I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} with wIJ = 0,

(h − rI + cJ ≥ h ⇔ cJ ≥ rI)

This proofs theorem 2.3.2 on page 10.
In the impervious case, see that arcs (s∗, i) carry upper capacity of ri − ei+,
such that, for a feasible flow in G to exist, all cut capacities in G∗ must exceed
h − e++. Again, if S = s∗ or S = V ∗ \ {t∗}, the cut capacity u(S) is equal to
h − e++. In any other case, except that of S = s∗ ∪ I ∪ J and S = I ∪ J ∪ t∗

where wIJ = 0, the cut capacity gets larger than h−1 and thus h−e++. Take S
to be the union of {s∗} and any I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} with wIJ = 0
to get the necessary and sufficient condition for a feasible circulation in G to
exist.

u(S∗) =
∑

(i,j)∈A, i∈S, j∈S

u∗
ij +

∑

(s∗,i)∈A∗,i∈S

u∗
s∗i +

∑

(it∗)∈A∗,i∈S

u∗
it∗ =

= 0 + h − e++ − (rI − eI+) + (cJ − e+J)
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and therefore u∗(S) ≥ h − e++ if and only if

cJ ≥ rI − eI+ + e+J = rI + eIJ − eIJ = rI + eIJ

for any I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} with wIJ = 0.
This proofs theorem 2.4.2 on page 11.

Based on these observations and on the fact, that the cut δ({s∗}) has cut ca-
pacity u({s∗}) = h in the pervious and u({s∗}) = h − e++ in the impervious
case, we can formulate an alternative condition for a feasible apportionment to
exist: Solve the maximum flow problem on G∗. If its corresponding maximum
flow value is equal to h or h − e++, respectively, all concerned arcs are satu-
rated and thus, the sets R0(W,σ) and R1(W,σ) are nonempty. The given result
and the similarity of the original and transformed network leads to a shortened
procedure presented in the next section.

5.3 Algorithmic approach

Since in the transformed network G∗ the upper capacities are reduced by the
value of their corresponding lower capacities in G, all arcs (i, j) with lij = uij

and thus all arcs emanating from and ending in the nodes s and t, vanish.
Both nodes s and t stay unconnected, since b(s) = b(t) = 0. Due to their
isolation, they do not play any further role in the network. At the same time,
two new nodes s∗ and t∗ are inserted. Recall, that we assumed the number of
arcs emanating from any district node i to be less than or equal to the required
number of seats in district i. This implies that b(i), with node i corresponding
to a district i, is nonnegative for both the pervious and impervious case. The
equivalent assumption for any party node j urges its associated b(j) to be limited
from above by zero.
For the pervious case, s(0) > 0, arc (s∗, i) is inserted if and only if i corresponds
to a district node, whereas arc (i, t∗) is added if and only if node i corresponds
to a party node. Thus, s∗ and t∗ take over the role of the isolated s and t,
respectively, and we define the network G(W,σ),s of the problem (W,σ) for a
pervious multiplier method As as follows:

1. insert a node for each party and each district,

2. add a source node s and a sink node t,

3. insert arc (i, j) with upper capacity uij = h and lower capacity lij = 0 if
and only if wij > 0,

4. insert arc (s, i) with upper capacity usi = ri and lower capacity lsi = 0
for all nodes i = 1, . . . , k corresponding to a district node and

5. insert arc (j, t) with upper capacity ujt = cj and lower capacity ljt = 0
for all nodes j = 1, . . . , l corresponding to a party node.
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If and only if the maximum flow value of network G(W,σ),s reaches h, the needed
saturation is given and an apportionment exists, so that we can formulate the
following steps:

6. solve the maximum flow problem on G(W,σ),s to get a maximum flow x,

7. if v(x) = h, then a feasible apportionment exists.

if v(x) < h, then no feasible apportionment exists.

Theorem 5.3.1 Let (W,σ) be a problem and As a pervious multiplier method.
Condition (2.3.1) holds if and only if the maximum flow value of the network
G(W,σ),s equals h.

In the case of an impervious multiplier method, s∗ and t∗ take over the role
of s and t, again. The network G(W,σ),s based on the problem (W,σ) for an
impervious multiplier method As is defined as follows:

1. insert a node for each party and each district,

2. add a source node s and a sink node t,

3. insert arc (i, j) with upper capacity uij = h and lower capacity lij = 0 if
and only if wij > 0,

4. insert arc (s, i) with upper capacity usi = ri − ei+ and lower capacity
lsi = 0 for all nodes i = 1, . . . , k corresponding to a district node and

5. insert arc (j, t) with upper capacity ujt = cj − e+j and lower capacity
ljt = 0 for all nodes j = 1, . . . , l corresponding to a party node.

The reduction of the upper capacity bounds on arcs between district and party
nodes is due to the needed reduced maximum flow value irrelevant and the upper
capacity therefore put to h. If and only if the maximum flow value reaches
h − e++ the concerned arcs are saturated and thus existence is established.
Thus,

6. solve the maximum flow problem on G(W,σ),s to get a maximum flow x,

7. if v(x) = h − e++, then a feasible apportionment exists.

if v(x) < h − e++, then no feasible apportionment exists.

Theorem 5.3.2 Let (W,σ) be a problem and As an impervious multiplier
method. Condition (2.4.1) holds if and only if the maximum flow value of the
network G(W,σ),s equals h − e++.
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5.4 Complexity

Given a network originated from a biproportional apportionment problem, the
worst case complexity for the Labelling algortihm can be specified more pre-
cisely. The number of arcs is bounded by (l + k + lk) and the worst case bound
on the number of iterations is O(h), since each augmentation increases the flow
value of at least one and the maximum flow value is bounded by h. This leads
to a overall worst case complexity of O(hlk).

Proposition 5.4.1 Let G be a network originated from the problem (W,σ).
The Labelling algorithm solves the maximum flow problem within O(hlk) time.

Together with the worst case bound O(lk) for the transformation process we
get the overall worst case complexity of O(hlk).



Chapter 6

Violating sets

In the case of nonexistence of a feasible apportionment, it might be interesting,
which constellation of parties and districts violate condition (2.3.1) and (2.4.1)
on page 10 and 11, respectively. Section 1 shows how to determine such sets,
which we denote by violating sets. Section 2 examines the complement sets,
both in consideration of violating the relevant condition and their role within the
failure of finding a feasible apportionment. Section 3 provides some information
about the quality of violating sets.

6.1 Identification of violating sets

With a given maximum flow, a dual solution can be fixed, representing a minimal
s-t separating cut, which itself determines the sets I and J , for which the above
mentioned conditions are violated.
Let x be such a maximum flow in the network G, originated from a problem.
Define L as the set of nodes, that are directly reachable from the source node
s in the residual network G(x) as defined in the proof of theorem 3.2.2 on page
18. This set can be partitioned into the source node {s} and two sets I and J ,
where I contains all nodes corresponding to a district node and J consists of all
nodes corresponding to a party node. Thus,

L = {s} ∪ I ∪ J.

Notice that L equals the set of labelled nodes in the last iteration of the Labelling
algorithm and defines an s-t separating minimal cut, since by definition of L,
any arc (i, j) emanating L is saturated and any arc (i, j) leading into L does
not carry positive flow. Hence, the cut capacity is equal to the maximum flow
and δ(L) is minimum.
Notice, that there is no arc (i, j), with i ∈ I and j ∈ J . If so, node j would
be labelled (j ∈ J), since (i, j) cannot be saturated. This contradicts our
assumption. Hence, wij = 0 for all (i, j), with i ∈ I and j ∈ J . Additionally,
we know that the maximum flow and thus the minimum cut capacity is strictly

36
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D1 P1

s D2 t

D3 P2

3

3

1

7

7

7

7

4

3

Figure 6.1:

Network G(W∗,σ∗),s with the labelled nodes L = {s, D2, D3, P2}. The dashed arcs
illustrate the unfavorable constellation.

less than h in the pervious case and strictly less than h− e++ in the impervious
case. We get

h > rI + cJ = h − rI + cJ ⇔ rI > cJ , and

h−e++ > rI−eI++cJ −e+J = h−rI−eI++cJ −e+J ⇔ rI +eIJ > cJ ,

respectively. This leads to the following proposition.

Proposition 6.1.1 Let G(W,σ),s be a network, originated from a problem (W,σ)
and its underlying multiplier method As, as defined in section 5.3. If no fea-
sible apportionment exists, the set L of all labelled nodes of G(W,σ),s in the
last iteration of the Labelling algorithm determines two sets I ⊂ {1, . . . , k} and
J ⊂ {1, . . . , l}, such that I consists of all labelled nodes corresponding to a dis-
trict and J consists of all labelled nodes corresponding to a party, for which
condition (2.3.1) and (2.4.1), respectively, is violated.

Network G in figure 4.2 on page 24 corresponds to the network G(W∗,σ∗),s in

figure 6.1 with W ∗ =




× ×
0 ×
0 ×



, where × denotes some positive number and

σ∗ = ((3, 3, 1), (4, 3)), with an underlying pervious multiplier method. Nodes
1 to 3 stand for district nodes D1, D2, D3 and nodes 4 and 5 correspond to
the party nodes P1 and P2. Take the labelled nodes L of this network in the
last iteration of the Labelling algorithm on page 27 to get L = {s,D2,D3, P2},
I = {D2,D3} and J = {P2}. We find, that wIJ = 0 and 3 = cJ < rI = 4.
In other words, the total number of seats of district D2 and D3 (4) cannot be
saturated by P2, the only party running in these districts, which is only entitled
to get a total of 3 seats.
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6.2 Complement sets

In consideration of the following implementation, we wish to find some sets of
parties and districts, such that the number of required seats by those parties ex-
ceed the total number of seats within the districts, where they run. Given I and
J , as defined in the previous section, we now concentrate on their complement
sets I and J and get

cJ < rI ⇔ h − cJ < h − rI ⇔ cJ > rI

in the pervious and

rI + eIJ > cJ ⇔ h − rI + eIJ > h − cJ ⇔ cJ > rI − eIJ

in the impervious case.

The relevant condition is only checked for the complement sets I and J , if
wIJ = 0. In this case, we see that for pervious multiplier methods, condition
(2.3.1) on page 10 holds. For impervious multiplier methods we do not get a
usable statement, since no further information is provided upon eIJ .

Nevertheless, the constellation within the complement sets is as unfavorable as
for I and J itself. This is based on the fact, that we deal with equality constraint
problems. The inequality for the complement sets is to interpret as follows:
The overall demand of seats of all parties {j : j ∈ J} cannot be satisfied by
the available seats of districts {i : i ∈ I}. Notice that in the impervious case,
’available’ denotes the total number of seats reduced by the number of parties
{j : j ∈ J}, which run in district {i : i ∈ I}.
Take the previous example of G(W∗,σ∗),s, to get I = {D1} and J = {P1}, such
that the required number of seats by party P1 (4), does exceed the number of
available seats in district D1 (3), where P1 gained positive weight. Or reformu-
lated, as given in the implementation, the number of total seats for district D1
(3) is less than what party P1 would need there (4).

In the impervious case, it is possible, that we can find some district d ∈ I, where
there is some party j ∈ J , that has positive weight, but still no party u ∈ J
is running there, such that wdJ > 0 and wdJ = 0. For the allocation of seats
of parties in J , this means that the seats of district d are not at their disposal.
Hence, the above formulated explanation can even be tightened, since ri ≥ ei+,
∀ i ∈ {1, . . . , k}. We define

I ′ := I ∪ D and

J ′ := J,

where D := {d : d ∈ I, wdJ > 0 and wdJ = 0}, to get

cJ > rI − rD − eIJ + eDJ = rI′ − eI′J .

Within the implementation, we have used the adjusted complement sets I ′ and
J ′, to explain the reason of failure.
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6.3 Properties of violating sets

As we have seen in the previous section, there are still other sets, next to I and
J , denying a feasible apportionment. Thus, minimality in terms of theorem 3.3.1
on page 19 can only be formulated with additional restrictions. The demand of
violating condition (2.3.1) and (2.4.1) on page 10 and 11 follows from above.

Define the weight matrix W to be disconnected, if we can find some nonempty
sets E ⊂ {1, . . . , k} and F ⊂ {1, . . . , l}, such that wEF = wEF = 0. In this case
we can permute rows and columns of W to get a matrix of the following form:

W =
(

W1 0
0 W2

)

W is called connected, if it is not disconnected.1

Given the problem (W,σ), with W disconnected, we define two subproblems
(W1,σ1) and (W2,σ2), where σ1 contains all necessary row and column con-
straints for the weight matrix W1. σ2 is defined analogously. If there is no
feasible apportionment for one of the subproblems, there is none for (W,σ).
Henceforth, we restrict on connected weight matrices.

Moreover, we find that for any set I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l}, which
violate the relevant condition, we cannot imply that the s-t separating cut δ(L),
with L := {s} ∪ I ∪ J is minimal.
For an example, see figure 6.2 and 6.3. We take the already well-known weight
matrix W ∗, the constraint vector σ∗∗ := ((2, 3, 1), (4, 2)) and an underlying
pervious multiplier method to get the network illustrated in figure 6.2. A max-
imum flow x = (xs,D1, xs,D2, . . . , xP2,t) = (2, 2, 0, 2, 0, 2, 0, 2, 2) with flow value
v(x) = 4 is already established. Based on x we determine L = {s,D2,D3, P2},
I = {D2,D3} and J = {P2}, such that wIJ = 0 and 2 = cJ < rI + eIJ = 5.

D1 P1

s D2 t

D3 P2

2/2

3/2

1/0

7/2

7/0

7/2

7/0

4/2

2/2

Figure 6.2:

G(W∗,σ∗∗),s with the realized maximum flow x = (xs,D1, xs,D2, . . . , xP2,t) =
(2, 2, 0, 2, 0, 2, 0, 2, 2) and v(x) = 4. δ(L) = {(s, D1), (D1, P2), (P2, t)} with u(L) = 4.

1See Bacharach [3] on page 47.
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Figure 6.3:

Network G(W∗,σ∗∗),s with the cut δ({s, D2, P2}) =
{(s, D1), (s, D3), (D1, P2), (D3, P2), (P2, t)} and cut capacity u({s, D2, P2}) = 5.

Take I◦ = {D2} and J◦ = {P2} to get wI◦J◦ = 0 and 2 = c◦J < r◦I = 3.
Although I◦ and J◦ violate condition (2.3.1) on page 10, they do not define a
minimal cut, since u(s ∪ I◦ ∪ J◦) = us,D1 + us,D3 + uP2,t = 5 > 4 = v(x). See
figure 6.3 for the cut δ({s,D2, P2}).

Hence, we further restrict on problems for which the maximum flow value in the
underlying network is h − 1 in the pervious and h − e++ − 1 in the impervious
case. This forces any cut, defined by some sets I and J , violating the relevant
condition, to be minimum, since u({s}∪ I ∪ J) < h in the pervious, u({s}∪ I ∪
J) < h − eIJ in the impervious case and every maximum flow value is integer
valued.
We can formulate the following proposition.

Proposition 6.3.1 Let (W,σ) be a problem, with W connected, As a multiplier
method and G(W,σ),s its corresponding network. If the minimum cut capacity
equals h − 1 in the pervious and h + e++ − 1 in the impervious case, the sets I
and J , determined as in proposition 6.1.1, denote a minimal set of both parties
and districts, for which condition (2.3.1) and (2.4.1), respectively, is violated.

Upholding the restrictions from above, we can now reformulate the result of
theorem 3.3.2 on page 20.

Proposition 6.3.2 Let (W,σ) be a problem, with W connected, As a multiplier
method and G(W,σ),s its corresponding network. If the minimum cut capacity
equals h − 1 in the pervious and h + e++ − 1 in the impervious case, the sets I
and J , determined as in proposition 6.1.1, are unique if and only if the minimum
cut δ(L′), based on the complement set of L′ as defined in section 3.3, is equal
to the minimum cut δ({s} ∪ I ∪ J).
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In the case of network G(W∗,σ∗),s, with W ∗ connected, and an underlying per-
vious multiplier method, we get the minimum cut capacity u(L) = 6 = h − 1.
Hence we determine L′ = {t, P1,D1} and find δ(L) = δ(L′), such that the sets
I = {D2,D3} and J = {P2} are the only sets within this network, which violate
condition (2.3.1) on page 10.
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Example

Let (W ∗,σ∗) be the given problem, with W ∗ =




× ×
0 ×
0 ×



, where × denotes

some positive number and σ∗ = ((3, 3, 1), (4, 3)). As denotes the underlying
impervious multiplier method. We want to check, wether there is a feasible
solution to this problem or not, using the results of the previous chapters.

7.1 Transformation

We start with transforming the problem into the network G(W∗,σ∗),s as defined
in section 5.3 on page 34 and illustrated in figure 7.1. For the upper capacities
we get:

us,D1 = rD1 − eD1,+ = 3 − 2 = 1,

us,D2 = rD2 − eD2,+ = 3 − 1 = 2,

us,D3 = rD3 − eD3,+ = 3 − 3 = 0,

us,P1 = cP1 − e+,P1 = 4 − 1 = 3,

us,P2 = cP2 − e+,P2 = 3 − 3 = 0.

7.2 Solving the maximum flow problem

We continue with the second step and go on solving the maximum flow prob-
lem on G(W∗,σ∗),s by applying the Labelling algorithm. In the first iteration
we determine path P : s → D1 → P1 → t with its associated residual capacity
r(P ) = min{rs,D1, rD1,P1, rP1,t} = min{1, 7, 3} = 1. In the next iteration no
further directed path can be found, so that the algorithm stops with the max-
imum flow x = (xs,D1, xs,D2, . . . , xP1,t) = (1, 0, 1, 0, 0, 0, 1) and its flow value
v(x) = 1. The determined flow and the finally labelled nodes L = {s,D2, P2}

42



Chapter 7 - Example 43

D1 P1

s D2 t

D3 P2

1

2

7

7

7

7

3

Figure 7.1:

Transformation of the problem (W ∗, σ∗) into the network G(W∗,σ∗),s.

are presented in figure 7.2, where z/y above any arc is to interpret as upper
capacity bound/actual flow.

D1 P1

s D2 t

D3 P2

1/1

2/0

7/1

7/0
7/0

7/0

3/1

Figure 7.2:

The maximum flow x = (xs,D1, xs,D2, . . . , xP1,t) = (1, 0, 1, 0, 0, 0, 1) in G(W∗,σ∗),s

with v(x) = 1 and L = {s, D2, P2}.

With e =




1 1
0 1
0 1



, we get e++ = 4 and thus no feasible solution exists, since

h − e++ = 7 − 4 = 3 > 1 = v(x).

7.3 Identifying violating sets

Since there is no feasible apportionment, we go on determining the sets I and
J as defined in proposition 6.1.1 on page 37 and get

L = {s,D2, P2} = {s} ∪ {D2} ∪ {P2},
I = {D2}, I = {D1,D3} and
J = {P2}, J = {P1} with
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rI + eIJ = 3 + 2 > 3 = cJ .

This means, party P2 totals three seats, which is not enough to satisfy the total
demand of seats of district D2, where it is the only party running in, plus two
extra seats in district D1 and D2, where it has positive weight. In figure 7.3
the corresponding arcs are dashed and illustrate the unfavorable constellation.
(y, z) above any arc denotes the lower and upper capacity bound.

D1 P1

s D2 t

D3 P2

(3, 3)

(3,3)

(1,1)

(1, 7)

(1, 7)
(1,7)

(1, 7)

(4, 4)

(3, 3)

Figure 7.3:

The dashed arcs demonstrate the unfavorable constellation.

The returned string, explaining the reason of failure within the implementation,
uses the adjusted complement sets I ′, J ′ as defined in section 6.2 on page 38.
Consequently,

I ′ := I \ {D3} = {D1},

since wD3,J = 2 and wD3,J = 0. We get

rI′ − eI′J = 3 − 2 < 3 = cJ .

Parties P1 and P2 would total 5 seats, but district D1, where they run just
commands 3 seats. Again, we have illustrated the unfavorable constellation in
figure 7.4.
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D1 P1

s D2 t

D3 P2

(3, 3)

(3,3)

(1,1)

(1, 7)

(1, 7)
(1,7)

(1, 7)

(4, 4)

(3, 3)

Figure 7.4:

The dashed arcs illustrate the unfavorable constellation.

7.4 Properties of the violating sets

Since the minimum cut capacity is less than v(x)− 1 = 2, we can neither apply
proposition 6.3.1 on page 40 nor proposition 6.3.2 on page 40.
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Pseudo-code

The pseudo-code is conformed with the notation of the Augsburg BAZI Pseudo-
Code1.

As throughout the work, the weight matrix is denoted by W = (wij), i ≤ k,
j ≤ l; marginal row and column constraints are given by the variables row =
(rowi)i≤k and col = (colj)j≤l. Notation as to the generated network agrees with
that introduced in chapter 2. The pseudo-code for the Labelling algorithm is
adopted from chapter 4.

Input

wij ≥ 0, real, i = 1, . . . , k, j = 1, . . . , l;
rowi ≥ 0, integer, i = 1, . . . , k;
colj ≥ 0, integer, j = 1, . . . , l;
s(0), integer, s signpost sequence

Output

The algorithm returns a null-string, if there is a feasible apportionment, other-
wise the returned string contains an explanation why a feasible apportionment
must fail.

1The Augsburg BAZI Pseudo-Code [15] by Friedrich Pukelsheim and the BAZI team,
university Augsburg.
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subroutine generateNetwork
begin

insert l + k + 2 nodes, which either stand for a party, a district,
the sink t or the source s;
if s(0) > 0 then

adjunct arc (s, i) for all district nodes i = 1, . . . , k and arc
(j, t) for all party nodes j = 1, . . . , l, with lsi := 0, usi := rowi

and ljt := 0, ujt := colj ;
add arc (i, j), with i corresponding to a district node
and j corresponding to a party node, if and only if wij > 0,
with lij := 0, uij := {sumj colj} = h;

else
adjunct arc (s, i) for all district nodes i = 1, . . . , k and arc
(j, t) for all party nodes j = 1, . . . , l, with lsi := 0,
usi := rowi − ei+ and ljt := 0, ujt := colj − e+j ;
add arc (i, j), with i corresponding to a district node
and j corresponding to a party node, if and only if
wij > 0, with lij := 0, uij := {sumj colj} = h;

end;

subroutine augment
begin

use the predecessor pred to trace back from the sink to the source
to obtain an augmenting path P from node s to t ;
δ := min{rij : (i, j) ε P};
augment δ units of flow along P and update the residual
capacities;

end;

algorithm existence test
begin

subroutine generateNetwork;
x:=0,e:=0,d:=1,p:=1;
label node t;
while t is labelled do
begin

unlabel all nodes;
set pred(i) := 0 ∀ i ∈ V ;
label s and set LIST:= {s};
while LIST,= ∅ and t unlabelled do
begin

remove a node i from LIST;
for each arc (i, j) in the residual

network emanating node i do
begin
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if node j is unlabelled then
set pred(j) := i, label j and add j to LIST;

end;
end;
if t is labelled then

subroutine augment;
end;
if ( s(0) > 0 and v(x) < h ) or (s(0) = 0 and v(x) < h − e++) then
begin

for each labelled node i do
begin

if node i corresponds to party t then pt = 0;
if node i corresponds to district z and s(0) > 0 then dz = 0;

end;
if s(0) = 0 then
begin

d:=0;
for i = 1, . . . , k and j = 1, . . . , l do
begin

if pj = 1 and wij > 0 then di = 1;
end;
for i = 1, . . . , k and j = 1, . . . , l do
begin

if di = 1 and pj = 0 and wij > 0 then e = e + 1;
end;

end;
prompt

”NA: Not Available: Parties {j : pj ,= 0} would total
[sumj:pj=1 pjcolj ]+e seats, but the districts {i : di = 1}
where they run command just [sumi dirowi] seats.”;

return;
end;

prompt transient message ”Iteration [Step] ...”;
return;
end;
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Implementation

The implementation was done in Java, the code is given in the appendix. The
programm consists of two classes, NetworkChange and MaxFlow. As a subrou-
tine for the BAZI algorithm, it specifies wether there is a solution to a bipro-
portional problem or not. The programm is based on the results of the previous
chapters and has to be started within the Class BipropMethod by generating an
object of the class MaxFlow. The classes themselves, contain following methods:

1. MaxFlow: String existSolution(Weight [ ][ ] WeightMatrix), boolean
containsPath(), String getCut(Weight [ ][ ] WeightMatrix), boolean con-
tains(int [ ] set, int node);

2. NetworkChange: Vector getAdjalists(), Vector getRAdjalists(), int getM(),
int getN(), int getE() .

Additionally, each class has its constructor NetworkChange(Weight [ ][ ] Weight-
Matrix, int [ ] Districtres, int [ ] Partyres, int numberDistricts, int number-
Parties, int Divisormethod) and MaxFlow(Weight [ ][ ] WeightMatrix, int [ ]
Districtres, int [ ] Partyres, int Divisormethod), respectively.

The programm can essentially be partitioned into four subroutines:

1. conversion of the problem (W,σ) into a network (→ class Network- Change)

2. establishing the maximum flow (→ class MaxFlow → method boolean
containsPath())

3. comparing the maximum flow to the relevant number: h in the pervious
case and h − e++ in the impervious case (→ class MaxFlow → method
boolean existSolution())

4. determination and return of a set of parties and districts explaining the
reason of failure (→ class MaxFlow → method String getCut())

The last subroutine can be dropped from consideration, if existence had been
established before.
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9.1 Class NetworkChange

Within the class MaxFlow an object of the class NetworkChange is generated
upon calling its constructor. Handing over the weight matrix of concern, its
marginal constraint arrays, the number of parties and districts and an integer
value to specify wether the multiplier method is pervious or impervious, this
constructor will determine the corresponding network. The network is stored
due to its adjacency list of both its forward and backward arcs, for reasons of
space sufficiency and the efficient manipulation.1 Two Vectors Adjalists and
RAdjalists are initialized in this process, denoting the adjacency list of the
forward arcs and the backward arcs, respectively. The entries of each Vector
are specified as LinkedList, such that for each node in the network, there is
one LinkedList consisting of all adjacent nodes. The entries of each LinkedList
themselves are organized again as Vectors, where the first component denotes
the adjacent node itself. The second component tells about the capacity of the
arc linking those two nodes and is followed by the actual flow, which is set to
zero for all arcs in the beginning. Further components are for intern reasons and
so far not important. Notice, that every arc (i, j) is stored twice. Firstly, as a
forward arc of node i in the Vector Adjalists. Secondly as a backward arc of node
j in the Vector RAdjalists. At the same time the constructor determines the
number of nodes, the number of arcs and the number of positive weights in the
weight matrix, stored in the private variables n, m and E. The methods Vector
getAdjalists(), Vector getRAdjalists, int getN(), int getM() and int getE() return
the forward and backward adjacency lists, the number of nodes and arcs and
the number of positive weights within the weight matrix. This information will
be the basis for the implemented algorithm to solve the maximum flow problem.

9.2 Class MaxFlow

To start the algorithm, an object of the class MaxFlow has to be generated,
handing over the weight matrix, the marginal constraint arrays and an integer
i, specifying the multiplier method. If it is impervious, then i = 0, other-
wise i = 1. To start the calculation, the adjacency lists as well as the number
of nodes and arcs are needed. As illustrated before, after generating an ob-
ject NetworkChange, this information is provided upon calling the appropriate
methods.
The actual calculation phase starts now. The method boolean containsPath()
is executed until no further path can be found and the actual flow is maximum.
Within this method, the Labelling algorithm is put into effect, such that in every
iteration the search of an augmenting path is realized, followed by the augmen-
tation, except in the last iteration, where the actual flow is already maximum.
Based on the maximum flow, subroutine three starts and the flow value is com-
pared to the relevant numbers, h and h − e++. This is realized by calling the
method String existSolution() within the class BipropMethod. If equality holds,

1See Ahuja, Magnanti and Orlin [1] on page 46.



Chapter 9 - Implementation 51

the algorithm terminates after returning the Null-String, which is interpreted
by the BAZI program to go on with the calculation of an apportionment.
If, however, in the case of nonexistence, the maximum flow is too small, the last
subroutine is executed by calling the method String getCut(), to determine a
minimal cut and thus, a set of parties and districts, which explain the reason
of failure. Since the variable Labelled still contains all labelled nodes of the
last iteration of the Labelling algorithm, the minimum cut and thus the sets
I and J , violating the relevant condition, are easily determined. Notice, that
for didactic reason, we take the complement sets I ′ and J ′ to generate the out-
put string, explaining the reason of failure. Recall, that I ′ does only contain
districts, where at least one of the parties in J ′ has positive weight. The total
seats of all districts contained in I ′ and the required seats of all parties in J ′ are
calculated. Again, the two cases of impervious and pervious multiplier method
are treated differently, since in the first case the number of required seats has
to be enlarged by the number eIJ , such that the required seats represent a
lower bound, whereas in the case of a pervious multiplier method, the number
of required seats specifies the absolute number. The string is returned both for
the method String getCut() and String existSolution() hereafter. The algorithm
terminates. The BAZI program, realizing, that the returned string is not Null
and thus no solution exists, stops after some further steps, too.
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Summary

By means of network theory we have found a necessary and sufficient condition
for the existence of a feasible apportionment for biproportional multiplier meth-
ods. This condition is efficiently checked by transforming the problem into a
network and establishing the maximum flow value. In the case of nonexistence,
we have determined a procedure to get a set of parties and a set of districts,
denying a feasible apportionment. Again, these results were based on graph
theoretic considerations. With further restrictions on the problems and the
determined maximum flow value we have provided some properties as to the
minimality and uniqueness of the violating sets. Finally, we have formulated
the procedure of establishing existence and determining the sets in question as
pseudo-code. We provided some information about the implementation in Java,
the code is given in the appendix.

However, an open questions is, how to proceed in the case of nonexistence of a
feasible allotment. Since the apportionment method is used in political areas,
the failure of an allotment is not acceptable.
Anthonisse [2] proposes to admit only those superapportionments and thus
marginal constraints for the parties, for which a feasible solution exists. If
we want to solve the problem within the given prerequisites, several political
questions arise, which have to be answered. Are districts or parties with a
deficit to be rewarded with extra seats due to a high electoral participation or
the successful electioneering? Or are the districts and parties with the surplus
to be punished for just the opposite reasons? Clearly, more work is needed to
get a better understanding.

52



Appendix A

Algorithm -
Balinski/Demange

Theorem 2.3.1 Let (W,σ) be a problem and s a pervious signpost sequence.
As(W,σ) is nonempty if and only if R0(W,σ) is nonempty.

Theorem 2.4.1 Let (W,σ) be a problem and the given multiplier method be
impervious. As(W,σ) is nonempty if and only if R1(W,σ) is nonempty.

Existence is proofed constructively by an algorithm given by Balinski and De-
mange1 and Gier2, for the special case of equality constraint problems, which
either determines a feasible apportionment or terminates without one in the case
of nonexistence. Again, we only regard problems (W,σ), for which the number
of strictly positive entries in W is less than or equal to h in the impervious case.

The given problem (W,σ) is transformed into a directed and capacitated net-
work:

1. insert a node for each party and each district,

2. add a source node s and a sink node t,

3. insert arc (i, j) with upper capacity uij = h and lower capacity lij = 0 if
and only if wij > 0,

4. insert arc (s, i) with upper and lower capacity usi = lsi = ri for all nodes
i = 1, . . . , k corresponding to a district node and

5. insert arc (j, t) with upper and lower capacity ujt = ljt = cj for all nodes
j = 1, . . . , l corresponding to a party node,

6. insert arc (t, s) with upper and lower capacity uts = lts = h.
1See [4] on page 205.
2See [10].
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The algorithm starts with a trial solution a = (aij), i ≤ k, j ≤ l, where aij =
[λiwijρj ]s and a++ = h, typically a nonfeasible circulation in the given network.
The main idea of this algorithm is to determine circles within the given network
on which a transfer of flow and thus seats decreases the total error

0(a) :=
∑

i∈{1,...,k}

|ri − ai+| +
∑

j∈{1,...,l}

|cj − a+j |

of at least one.
Define I< := {i ∈ {1, . . . , k} : ai+ < ri}, I> := {i ∈ {1, . . . , k} : ai+ > ri}
and analogously J<, J>. Obviously all marginal constraints are fulfilled, if
I< = J< = ∅. The search for a possible circle is realized with a labelling
procedure. Starting with the set I< (if I< ,= ∅, we take J< and its corresponding
adjusted procedure), we wish to label nodes, such that they determine a circle
through node s. In this case, a transfer of flow on the circle would reduce the
total error by at least one. Is no further labelling possible and s is unlabelled,
the nonnegative multipliers λ and ρ have to be adjusted, and we get a new
scaled problem wij = (λiwijρj). Is this scaling process successful, any choice
of the new multipliers does not change the apportionment and further labelling
is possible. Hence, after a finite number of successful scaling phases node s is
labelled and the total error can be reduced. Thus, a reduction of the total error
to zero is possible within finite steps and the algorithm terminates with a feasible
apportionment, if every scaling phase is successful. If it is unsuccessful, such that
no possible scaling could be found, no feasible apportionment can exist, the sets
R0(W,σ) and R1(W,σ), respectively, are empty and the algorithm terminates.

A.1 Pseudo-code

The pseudo-code below, as provided by Gier3, is conformed with the terminology
hitherto.

Input: Network due to the problem (W,σ) and its underlying multiplier
method As, as defined above.

Output: An apportionment a ∈ R0(W,σ) or a ∈ R1(W,σ) or termination
with the result that R0(W,σ) or R1(W,σ), respectively, is empty
and no feasible apportionment exists.

algorithm Balinski/Demange
begin

determine I<, I>, J< and J>;
choose two nonnegative multipliers λ ∈ Rk and ρ ∈ Rl,
such that

∑
ij [λiwijρj ]s = h;

while (I< ,= ∅) do
begin

while s is unlabelled do
3See [10].
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begin
if further labelling is possible then subroutine label;
else

if scaling is possible then subroutine scale;
else EXIT: no feasible apportionment exists

end;
end;
if s is labelled then subroutine augment

end;

Notice, that only the case of I< ,= ∅ is treated. If I< = ∅ ,= J< then we continue
with the equivalent procedure for J<, which is formulated analogously.

subroutine label
begin

label all nodes i ∈ I< and set pred(i) := s;
define (s, i) to be a forward arc;
for each arc (i, j), with i labelled, j unlabelled and (λiwijρj) = s(aij) do
begin

label node j;
set pred(j) := i;
define arc (i, j) to be a forward arc;

end;
for each labelled node i with ri < ai+ do
begin

label node s;
set pred(s) := i;
define arc (s, i) to be a backward arc;

end;
for each arc (i, j), with i unlabelled, j labelled and

(λiwijρj) = s(aij − 1), with aij ≥ 1 do
begin

label node i;
set pred(i) := j;
define arc (i, j) to be a backward arc;

end;
for each labelled node j with cj > a+j do
begin

label node t;
set pred(t) := j;
define arc (i, j) to be a forward arc;

end;
if t is labelled then

for each unlabelled node j with cj < a+j do
begin

label node j;
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set pred(j) := t;
define arc (j, t) to be a backward arc;

end;
end;

subroutine scale
begin
δ1 := min{ s(aij)

λiwijρj
: i labelled, j unlabelled};

δ2 := min{ λiwijρj

s(aij−1) : i unlabelled, j labelled};
δ := min{δ1, δ2};

set λ :=
{
δλi for all labelled i,
λi otherwise;

set ρ :=
{

1
δρi for all labelled j,
ρi otherwise;

end;

subroutine augment
begin

use the predecessor pred to trace the circle C passing through
node s;
for each arc (i, j) on C, with (i, j) forward arc do
begin

set aij := aij + 1;
end;
for each arc (i, j) on C, with (i, j) backward arc do
begin

set aij := aij − 1;
end;

end;

A.2 Correctness

The algorithm terminates, if the total error 0(a) = 0 or no further scaling is
possible. Thus, we have to show that the algorithm terminates within a finite
number of steps and returns a feasible apportionment, if every scaling phase is
successful or no feasible apportionment exists and hence the sets R1(Wσ) and
R0(W,σ) are empty, if there is an unsuccessful scaling phase.

If no unsuccessful scaling phase occurs then the algorithm can reduce the total
error by at least one after at most k+l scaling phases, since after every successful
scaling phase further labelling is possible. With 0(a) < ∞, the algorithm
terminates within a finite number of steps.

According to Gier4, an appropriate scaling of λ and ρ only takes place, if no
further labelling is possible and node s stays unlabelled. Hence, there is no

4See [10].
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labelled node i, for which ri < ai+. Moreover (λi ∗ wij ∗ ρj) < d(aij), with i
labelled and j unlabelled and s(aij − 1) < (λiwijρj), with i unlabelled and j
labelled.
We define the scalar δ as follows:

δ := min{δ1, δ2}, with

δ1 := min{ s(aij)
λiwijρj

: i labelled, j unlabelled} and

δ2 := min{ λiwijρj

s(aij − 1)
: i unlabelled, j labelled}.

No further scaling is possible, if δ and thus both δ1 and δ2 stay undefined. Define
I to consist of all labelled district nodes and J to consist of all labelled party
nodes.
δ1 is undefined, if all party nodes are labelled, J = ∅, or (λiwijρj) = wij = 0,
for all (i, j), with i ∈ I, j ∈ J .
In the second case, I = ∅, all district nodes are labelled, or s(aij − 1) = 0, for
all i ∈ I, j ∈ J forces δ2 to be undefined.

Impervious multiplier methods (s(0) > 0):

If (λiwijρj) = wij = 0, for all (i, j), with i ∈ I, j ∈ J and s(aij − 1) = 0, for
all i ∈ I, j ∈ J , we get aIJ = 0 = aIJ . Together with the fact, that there is
no labelled district for which ri < ai+, we get aIJ < rI . Notice that cJ ≤ aIJ ,
since J ∩ J< = ∅, if t is unlabelled and J> ⊆ J , if t is labelled. We get

cJ ≤ aIJ < rI ,

what contradicts the demand that we should have rI = cJ , since aIJ = 0 = aIJ .
R0(W,σ) is empty.
For any other combination with I = ∅ and J = ∅, we get the same result.

Impervious multiplier method (s(0) = 0):

If (λiwijρj) = wij = 0, for all (i, j), with i ∈ I, j ∈ J and s(aij − 1) = 0, for all
i ∈ I, j ∈ J , we get wIJ = 0 and wIJ = eIJ . With cJ ≤ a+J and rI < aI+ we
get

cJ ≤ a+J = aIJ + aIJ = aIJ + aIJ + eIJ = aI+ + eIJ < rI + eIJ .

This contradicts the demand that we should have cJ ≥ rI + eIJ . R1(W,σ) is
empty. For any combination with I = ∅ and J = ∅ follows the same.
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Java-code

B.1 Class MaxFlow

package bazi.lib;

import java.util .∗;
import bazi.∗;

5

public class MaxFlow

{
private int E, h, n, m, maxfluss = 0, gesamtfluss, s = 0, DivMethode;

private int Anzahl Parteien, Anzahl Distrikte;

10 private int [ ] rows, cols , Labelled;

private double x;

private char a;

private String b;

private Vector Adjalisten = new Vector();

15 private Vector RAdjalisten = new Vector();

private NetworkChange nu;

private String [ ] districtNames;

//constructor

20 public MaxFlow(Weight[ ][ ] Gewicht, int[ ] Zeilen , int [ ] Spalten,

int Divisormethode, String [ ] dNames)

{
districtNames = dNames;

nu = new NetworkChange(Gewicht, Zeilen, Spalten, Zeilen.length, Spalten.

length, Divisormethode);

25 Adjalisten = nu.getAdjalists () ;

RAdjalisten = nu.getRAdjalists();

gesamtfluss = 0;

rows = Zeilen;

cols = Spalten;

30 x = 0;
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m = nu.getM();

n = nu.getN();

E=nu.getE();

Anzahl Parteien = Spalten.length;

35 Anzahl Distrikte = Zeilen.length;

DivMethode = Divisormethode;

h=0;

for (int i=0; i<Zeilen.length; i++)

40 {
h = h + Zeilen[i ];

}
}

45 //method existSolution to establish the maximum flow/existence

public String existSolution(Weight [ ][ ] Gewicht)

{
while ( containsPath() ) {}

50 if ( ( h==gesamtfluss && DivMethode==1 )||
( gesamtfluss==h && DivMethode==0 ))

{
return null;

}
55 else

{
return getCut(Gewicht);

}
}

60

//method containsPath to determine augmenting paths

public boolean containsPath()

{
Labelled = new int[n + 1];

65 int [ ] Kontrolliert = new int[n + 1];

int [ ] Epsilon = new int[n + 1];

int [ ][ ] Vorgaenger = new int[n + 1][2];

for (int i = 0; i < n + 1; i++)

70 {
Labelled[ i ] = 0;

Kontrolliert [ i ] = 0;

}

75 for (int i = 0; i < n + 1; i++)

{
for (int j = 0; j < 2; j++)

{
Vorgaenger[i ][ j ] = 0;
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80 }
Epsilon[ i] = 10000000;

}

int help1 = 0;

85 int help2 = 0;

int help3 = 0;

Labelled[help1] = 1;

help1++;

90 Kontrolliert [help2] = 1;

help2++;

while (!contains(Labelled, n))

{
95 if (! ( help2 == 0))

{
help3 = Kontrolliert [help2 − 1];

Kontrolliert [help2 − 1] = 0;

help2 = help2 − 1;

100

Iterator it = ( (LinkedList) Adjalisten.elementAt(help3)).

listIterator () ;

int position1 = 0;

105 while (it .hasNext())

{
Vector vhelp = (Vector) it .next();

if ( ! contains ( Labelled , ( ( Integer) vhelp.get(0)) .

110 intValue()))

{
if ( ( ( Integer) vhelp.get(2)) .intValue() <

( ( Integer) vhelp.get(1)) .intValue())

{
115 Vorgaenger[ ( ( Integer) vhelp.get(0)) .

intValue() ][0] = help3;

Vorgaenger[ ( ( Integer) vhelp.get(0)) .

intValue() ][1] = position1 ;

Epsilon [ ( ( Integer) vhelp.get(0)) .intValue()] =

120 java.lang.Math.min( ( (Integer) vhelp.get(1)) .

intValue() − ( ( Integer) vhelp.get(2)) .

intValue() , Epsilon[help3 ] ) ;

Labelled[help1 ] = ( ( Integer) vhelp.get(0)) .

125 intValue() ;

help1++;
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if (! contains(Kontrolliert , ( ( Integer) vhelp.get(0)) .

130 intValue()))

{
Kontrolliert [help2 ] = ( ( Integer) vhelp.get(0)) .

intValue() ;

help2++;

135

}
}

}
position1++;

140 }

Iterator ite = ( (LinkedList) RAdjalisten.elementAt(help3)).

listIterator () ;

145 int position2 = 0;

while (ite.hasNext())

{
Vector vhelp = (Vector) ite .next();

if (! contains(Labelled,

150 ( ( Integer) vhelp.get(0)) .intValue()) )

{
if (( ( Integer) vhelp.get(2)) .intValue()>0)

{
Vorgaenger[ ( ( Integer) vhelp.get(0)) .

155 intValue() ][0] = −1 ∗ help3;

Vorgaenger[ ( ( Integer) vhelp.get(0)) .

intValue() ][1] = position2 ;

Epsilon [ ( ( Integer) vhelp.get(0)) .intValue()] =

java.lang.Math.min( ( (Integer) vhelp.get(2)) .

160 intValue() , Epsilon[help3 ] ) ;

Labelled[help1 ] = ( ( Integer) vhelp.get(0)) .intValue() ;

help1++;

165 if (! contains(Kontrolliert , ( ( Integer) vhelp.get(0)) .

intValue()))

{
Kontrolliert [help2 ] = ( ( Integer) vhelp.get(0)) .

intValue() ;

help2++;

}
170 }

}
position2++;

}
175
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}
else

{
return false;

180 }

}

int help4 = n;

185 while (! (help4 == 1))

{
if (Vorgaenger[help4][0] >= 0)

{

190 int a = ( (Integer) ( ( Vector) ( (LinkedList) Adjalisten.

get(Vorgaenger[help4][0]) ) .get(Vorgaenger[help4][1]) ) .

elementAt(2)).intValue();

( (Vector) ( (LinkedList) Adjalisten.get

195 (Vorgaenger[help4][0]) ) .get(Vorgaenger[help4][1]) ) .

removeElementAt(2);

( (Vector) ( (LinkedList) Adjalisten.get

(Vorgaenger[help4][0]) ) .get(Vorgaenger[help4][1]) ) .

add(2, new Integer(a + Epsilon[n]));

200

LinkedList b = (LinkedList) RAdjalisten.get(help4);

Iterator lit = b. listIterator () ;

int zahl = 0;

while (lit .hasNext() && zahl >= 0)

205 {
Vector c = (Vector) lit .next();

if ( ( ( Integer) c.get(0)) .intValue() ==

Vorgaenger[help4][0])

{
210 int ar = ( (Integer) ( ( Vector) ( (LinkedList)RAdjalisten.

get(help4)) .get(zahl)) .get(2)) .intValue() ;

( (Vector) ( (LinkedList) RAdjalisten.get(help4)) .

get(zahl)) .removeElementAt(2);

( (Vector) ( (LinkedList) RAdjalisten.get(help4)) .

215 get(zahl)) .add(2,new Integer(ar + Epsilon[n]));

zahl = −2;

}
zahl++;

}
220

help4 = Vorgaenger[help4][0];

}
else

{
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225 int a = ( (Integer) ( ( Vector) ( (LinkedList)RAdjalisten.

get( −1 ∗ Vorgaenger[help4][0]) ) .get(Vorgaenger[help4][1]) ) .

elementAt(2)).intValue();

( (Vector) ( (LinkedList) RAdjalisten.get( −1 ∗ Vorgaenger

[help4 ][0]) ) .get(Vorgaenger[help4][1]) ) .

230 removeElementAt(2);

( (Vector) ( (LinkedList) RAdjalisten.get( −1 ∗ Vorgaenger

[help4 ][0]) ) .get(Vorgaenger[help4][1]) ) .

add(2, new Integer(a − Epsilon[n]));

235 LinkedList b1 = (LinkedList) Adjalisten.get(help4);

Iterator lit1 = b1. listIterator () ;

int zahl1 = 0;

while (lit1 .hasNext() && zahl1 >= 0)

{
240 Vector c = (Vector) lit1 .next();

if ( ( ( Integer) c.get(0)) .intValue() ==

−1 ∗ Vorgaenger[help4][0])

{
( (Vector) ( (LinkedList) Adjalisten.get(help4)) .

245 get(zahl1)) .removeElementAt(2);

( (Vector) ( (LinkedList) Adjalisten.get(help4)) .

get(zahl1)) .add(2,new Integer(a − Epsilon[n]));

zahl1 = −1;

}
250 zahl1++;

}

help4 = −1 ∗ Vorgaenger[help4][0];

}
255

}
maxfluss = Epsilon[n];

gesamtfluss = gesamtfluss + maxfluss;

260 return true;

}

265 //method contains

public boolean contains(int[ ] menge, int Knoten)

{
for (int i = 0; i < menge.length; i++)

{
270 if (menge[i] == Knoten)

{
return true;

}
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275 }
return false;

}

//method getCut to generate the output String

280 public String getCut(Weight [ ][ ] Gewicht)

{
String sDistricts = ””;

String sParties = ””;

String seatsRec = ””;

285 String seatsEx = ””;

//for pervious multiplier methods

if (DivMethode == 1)

{
290 System.out.println(”MF−IF”);

int SummeParteien = 0;

int SummeDistrikte = 0;

int [ ] D = new int[rows.length + 1];

int [ ] P = new int[cols.length + 1];

295 for (int u = 0; u < rows.length + 1; u++)

{
D[u] = 1;

}
D[0] = 0;

300 for (int h = 0; h < cols.length + 1; h++)

{
P[h] = 1;

}
P[0] = 0;

305

for (int i = 0; i < Labelled.length ; i++)

{
if (Labelled[ i] > 1 + Anzahl Distrikte && Labelled[i] < n)

{
310 P[Labelled[i] − 1 − Anzahl Distrikte] = 0;

}
}
int h = 0;

for (int f = 1; f < cols .length + 1; f++)

315 {
if (P[f] == 1)

{
if (h == 0)

{
320 sParties += ”\”” + Gewicht[0][f − 1].name + ”\””;

}
else
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{
sParties += ”, \”” + Gewicht[0][f − 1].name + ”\””;

325 }
SummeParteien += cols[f − 1];

h++;

}
}

330

seatsRec += SummeParteien;

for (int j = 0; j < Labelled.length ; j++)

{
335 if (Labelled[ j] <= 1 + Anzahl Distrikte && Labelled[j] > 1)

{
D[Labelled[j ] − 1] = 0;

}
}

340 int z = 0;

for (int r = 1; r < rows.length + 1; r++)

{
if (D[r] == 1)

{
345 if (z == 0)

{
sDistricts += ”\”” + districtNames[r − 1] + ”\””;

z++;

}
350 else

{
sDistricts += ”, \”” + districtNames[r − 1] + ”\””;

}
SummeDistrikte += rows[r − 1];

355 z++;

}
}

seatsEx += SummeDistrikte;

360

}

//for impervious multiplier methods

else

365 {
System.out.println(”MF−ELSE”);

int SummeParteien = 0;

int SummeDistrikte = 0;

int [ ] D = new int[rows.length + 1];

370 int [ ] P = new int[cols.length + 1];

for (int u = 0; u < rows.length + 1; u++)
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{
D[u] = 0;

}
375 D[0] = 1;

for (int h = 0; h < cols.length + 1; h++)

{
P[h] = 1;

}
380 P[0] = 0;

for (int i = 0; i < Labelled.length ; i++)

{
if (Labelled[ i] > 1 + Anzahl Distrikte && Labelled[i] < n)

385 {
P[Labelled[i] − 1 − Anzahl Distrikte] = 0;

}
}

390 int h = 0;

for (int f = 1; f < cols .length + 1; f++)

{
if (P[f] == 1)

{
395 System.out.println(f) ;

if (h == 0)

{
sParties += ”\”” + Gewicht[0][f − 1].name + ”\””;

}
400 else

{
sParties += ”, \”” + Gewicht[0][f − 1].name + ”\””;

}
SummeParteien += cols[f − 1];

405 h++;

}
}

h = 0;

410 for (int g = 1; g < rows.length + 1; g++)

{
for (int gg = 0; gg < cols.length ; gg++)

{
if (P[gg+1] == 1)

415 {
if (Gewicht[ (g − 1)][gg ].weight > 0)

{
D[g] = 1;

420 }
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}
}

}

425 int z = 0;

for (int r = 1; r < rows.length + 1; r++)

{
if (D[r] == 1)

{
430 if (z == 0)

{
sDistricts += ” \”” + districtNames[r − 1] + ”\””;

z++;

}
435 else

{
sDistricts += ”, \”” + districtNames[r − 1] + ”\””;

}
SummeDistrikte += rows[r − 1];

440 }
}

for (int g = 1; g < rows.length + 1; g++)

{
445 if (D[g]==1)

{
for (int gg = 0; gg < cols.length ; gg++)

{
if (P[gg+1] == 0)

450 {
if (Gewicht[ (g − 1)][gg ].weight > 0)

{
sParties += ”, \”” + Gewicht[0][gg].name

+ ”\””;

455 SummeParteien += 1;

}
}

}
460 }

}

seatsRec += SummeParteien;

seatsEx += SummeDistrikte;

465

}

String returnString =

Resource.getString(”bazi.gui.dpp.maxflow1”) + ” ”
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470 + sDistricts

+ ” ” + Resource.getString(”bazi.gui.dpp.maxflow2”)

+ seatsEx

+ Resource.getString(”bazi.gui.dpp.maxflow3”) + ” ”

+ sParties

475 + ” ” + Resource.getString(”bazi.gui.dpp.maxflow4”)

+ seatsRec

+ Resource.getString(”bazi.gui.dpp.maxflow5”);

return returnString;

}
480

}
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B.2 Class NetworkChange

package bazi.lib;

import java.util .∗;

class NetworkChange

5 {

private int E, n, m = 0;

private Vector Adjazenzlisten;

private Vector RAdjazenzlisten;

10 private int Kantenanzahl = 0;

//constructor to determine the network in question

public NetworkChange(Weight[ ][ ] Gewicht, int[ ] Distriktres ,

int [ ] Parteires , int AnzahlDistrikte, int AnzahlParteien,

15 int Divisormethode)

{
n = AnzahlParteien + AnzahlDistrikte + 2;

Adjazenzlisten = new Vector();

RAdjazenzlisten = new Vector();

20 E=0;

int helpstart ;

int helpende;

int Kantenkap;

25

for (int j = 0; j < n + 1; j++)

{
LinkedList c = new LinkedList();

Adjazenzlisten.add(j , c) ;

30 LinkedList d = new LinkedList();

RAdjazenzlisten.add(j, d);

}

35 // node s

for (int i = 2; i < AnzahlDistrikte + 2; i++)

{
Vector Kante = new Vector();

Vector RKante = new Vector();

40 helpstart = 1;

helpende = i;

Kantenkap = Distriktres[i − 2];

Kante.add(new Integer(helpende));

Kante.add(new Integer(Kantenkap));

45 Kante.add(new Integer(0));

Kante.add(new Integer(m + 1));

RKante.add(new Integer(helpstart));
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RKante.add(new Integer(Kantenkap));

RKante.add(new Integer(0));

50

( (LinkedList) Adjazenzlisten.elementAt(helpstart)).

addLast( (Object) Kante);

( (LinkedList) RAdjazenzlisten.elementAt(helpende)).

55 addLast( (Object) RKante);

m++;

}

// party and district nodes

60 for (int k = 2; k < AnzahlDistrikte + 2; k++)

{
for (int i = AnzahlDistrikte + 2; i < n; i++)

{
if ( ( Gewicht[k − 2][i − AnzahlDistrikte − 2]).weight > 0)

65 Vector Kante = new Vector();

Vector RKante = new Vector();

helpstart = k;

helpende = i;

Kantenkap = 1000000;

70 Kante.add(new Integer(helpende));

Kante.add(new Integer(Kantenkap));

Kante.add(new Integer(0));

Kante.add(new Integer(m + 1));

RKante.add(new Integer(helpstart));

75 RKante.add(new Integer(Kantenkap));

RKante.add(new Integer(0));

( (LinkedList) Adjazenzlisten.elementAt(helpstart)).

80 addLast( (Object) Kante);

( (LinkedList) RAdjazenzlisten.elementAt(helpende)).

addLast( (Object) RKante);

m++;

E++;

85 }
}

}

// node t

90 for (int i = AnzahlDistrikte + 2; i < n; i++)

{
Vector Kante = new Vector();

Vector RKante = new Vector();

helpstart = i ;

95 helpende = n;

Kantenkap = Parteires[i − AnzahlDistrikte − 2];
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Kante.add(new Integer(helpende));

Kante.add(new Integer(Kantenkap));

Kante.add(new Integer(0));

100 Kante.add(new Integer(m + 1));

RKante.add(new Integer(helpstart));

RKante.add(new Integer(Kantenkap));

RKante.add(new Integer(0));

105

( (LinkedList) Adjazenzlisten.elementAt(helpstart)).

addLast( (Object) Kante);

( (LinkedList) RAdjazenzlisten.elementAt(helpende)).

addLast( (Object) RKante);

110 m++;

}

// corrections for impervious multiplier methods

if (Divisormethode == 0)

115 {
LinkedList help = ( (LinkedList) Adjazenzlisten.elementAt(1));

Iterator it = help. listIterator () ;

Vector vec = new Vector();

120 for (int i = 2; i < AnzahlDistrikte + 2; i++)

{
vec = (Vector) it .next();

int neuesr = ( (Integer) vec.elementAt(1)).intValue() −
( (LinkedList) Adjazenzlisten.elementAt(i)). size () ;

125

vec.removeElementAt(1);

vec.add(1, new Integer(neuesr));

( (Vector) ( (LinkedList) RAdjazenzlisten.elementAt(i)).

get(0)) .removeElementAt(1);

130 ( (Vector) ( (LinkedList) RAdjazenzlisten.elementAt(i)).

get(0)) .add(1, new Integer(neuesr));

}

for (int i = AnzahlDistrikte + 2; i < n; i++)

135 {
vec = (Vector) ( (LinkedList) Adjazenzlisten.elementAt(i)).

get(0) ;

int neuesc = ( (Integer) vec.elementAt(1)).intValue() −
( (LinkedList) RAdjazenzlisten.elementAt(i)).size () ;

140

vec.removeElementAt(1);

vec.add(1, new Integer(neuesc));

( (Vector) ( (LinkedList) RAdjazenzlisten.elementAt(n)).

get( i − AnzahlDistrikte − 2)).removeElementAt(1);

145 ( (Vector) ( (LinkedList) RAdjazenzlisten.elementAt(n)).
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get( i − AnzahlDistrikte − 2)).add(1, new Integer(neuesc));

}
}

}
150

//method getAdjalists

public Vector getAdjalists()

{
return Adjazenzlisten;

155 }

//method getRAdjalists

public Vector getRAdjalists()

{
160 return RAdjazenzlisten;

}

//method getM

public int getM()

165 {
return m;

}

//method getN

170 public int getN()

{
return n;

}

175 //method getE

public int getE()

{
return E;

}
180

}
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