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Abstract

Canonical reduction of second-order response surfaces is a useful technique for �nding the form and shape
of surfaces and often for discovering redundancies that enable the surface to be expressible in a simpler
form with fewer canonical predictor variables than there are original predictor variables. Canonical reduction
of models subject to linear restrictions has received little attention, possibly due to the apparent di1culty
of performing it. An important special application is when the predictor variables are mixture ingredients
that must sum to a constant; other linear restrictions may also be encountered in such problems. A possible
di1culty in interpretation is that the stationary point may fall outside the permissible restricted space. Here,
techniques for performing such a canonical reduction are given, and two mixture examples in the literature
are re-examined, and canonically reduced, to illustrate what canonical reduction can and cannot provide.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Second-order (also called second degree) response surfaces, which can assume various forms (see
Box and Draper, 1987, pp. 346–355), are frequently �tted to data arising from industrial and research
experiments, and it is then necessary to examine exactly what form of surface has been attained.
For two or three factors, this can best be done by viewing surface plots, and for more dimensions,
cross-sectional plots in two or three dimensions could be drawn. However, a more general tool,
which will also reveal informative surface redundancies, is canonical analysis, also called canonical
reduction. Canonical reduction is a method of rewriting a �tted second-order equation in a form
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in which it can be more readily understood. There are two main stages. First, a speci�c rotation
of axes that removes all cross-product terms produces the so-called A canonical form. Then an
appropriate change of origin removes all �rst-order terms as well and gives rise to the so-called B
canonical form. This can be easily interpreted to understand the main features of the �tted surface;
for speci�c examples, see Box and Draper (1987, pp. 332–355). In Section 2, we brieCy recapitulate
the implementation of canonical analysis when there are no restrictions. Sections 3 and 4 set out
the modi�cations needed when linear restrictions on the predictor variables must be observed. These
linear restrictions include, but are not limited to, the mixture restriction that applies in standard types
of experiments with mixtures of ingredients adding (usually) to 1; see Cornell (2002). Sections 5
and 6 apply the work of Sections 3 and 4 to two abbreviated worked examples from the literature.

2. Canonical reduction with no restrictions

The general �tted second-order response surface can be written as

ŷ = b0 + x′b+ x′Bx; (1)

where x′ = (x1; x2; : : : ; xq); b′ = (b1; b2; : : : ; bq), and where

B=



b11 1

2b12 : : : 1
2b1q

: : : b22 : : : 1
2b2q

: : : : : : : : : : : :

sym : : : : : : bqq


 (2)

is a symmetric matrix. Then (1) is the matrix format for the second-order �tted equation

ŷ= b0 + b1x1 + b2x2 + · · ·+ bqxq + b11x21 + b22x22 + · · ·+ bqqx2q
+b12x1x2 + b13x1x3 + · · ·+ bq−1; qxq−1xq: (3)

DiFerentiation of the �tted equation (1) with respect to x and setting the result equal to a zero
vector leads to b+ 2Bx = 0, and the solution,

xs =− 1
2B

−1b (4)

de�nes the stationary point of (1). This is the center of the quadratic system, also.
Suppose �1; �2; : : : ; �q are the eigenvalues of B and m1;m2; : : : ;mq are corresponding normalized

and mutually orthogonal eigenvectors. Then the matrix M={m1;m2; : : : ;mq} has M′=M−1. Because
the eigenvalues and vectors are de�ned by Bmi=mi�i; i=1; 2; : : : ; q, we can write BM=M	, where
	 = diagonal(�1; �2; : : : ; �q). Premultiplying by M′ =M−1 leads to M′BM = 	. Using this result,
and by insertion of MM′ = I into (1), we obtain

ŷ = b0 + (x′M)(M′b) + (x′M)M′BM(M′x): (5)

We can now let X=M′x and �=M′b (or equivalently, x=MX and b=M�) and express (5) as

ŷ = b0 + X′�+ X′	X: (6)
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This constitutes the “A canonical form” in which the axes have been rotated to remove cross-product
terms, but the new variables X are measured from the original origin.
The “B canonical form” is obtained by moving the origin to the stationary point (4), by substituting

new variables W = X −M′xs = X −M′(− 1
2B

−1b), which implies that X =W − 1
2M

′B−1b. After
some algebra, this leads to

ŷ = b0 − 1
4b

′B−1b+W′	W

or

ŷ = ŷ s +W′	W; (7)

where

ŷ s = b0 + 1
2b

′xs = b0 − 1
4b

′B−1b (8)

is the predicted response at the stationary point. Eq. (7) is the B canonical form, most frequently
employed in practice. For examples, see Box and Draper (1987, Chapters 10–11).

3. Adding linear restrictions

Suppose we wish to perform canonical reduction subject to a set of linear restrictions of the form

Ax = c; (9)

where A is a given m × q matrix of linearly independent rows, normalized so that the sum of
squares of each row is 1, and where c is a given m × 1 vector. For example, suppose we were
investigating a mixture problem with ingredients x1; x2; : : : ; xq restricted by

1′x = x′1= x1 + x2 + · · ·+ xq = 1; (10)

where 1′ = (1; 1; : : : ; 1), a 1× q vector. We could choose

A =
1
q1=2

(1; 1; : : : ; 1) and c =
1
q1=2

: (11)

If this mixture space were further restricted to the plane

(�1; �2; : : : ; �q)x = �; (12)

where all the �i’s were pre-speci�ed and �21 + �
2
2 + · · ·+ �2q = 1, then m= 2,

A =

[ 1
q1=2

1
q1=2 · · · 1

q1=2

�1 �2 · · · �q

]
and c =

[ 1
q1=2

�

]
(13)

and so on. Of course, any set of non-contradictory, linearly independent linear restrictions can be
adopted. We are not con�ned only to mixture problems with ingredients adding to 1. The dimension
m of A must be such that m¡q in general. When m = q, the restrictions de�ne a single point in
the x-space.
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4. Canonical reduction under linear restrictions

Let T be any (q− m)× q matrix each of whose (q− m) rows is orthogonal to every row of A,
and such that TT′ = Iq−m. Another way of saying this is that the columns of A′ form a basis for
the restriction space, and those of T′ form an orthonormal basis for the space orthogonal to A′. It
follows that

TA′ = 0 (of size (q− m)× m);
AT′ = 0 (of size m× (q− m));
TT′ = Iq−m (of size (q− m)× (q− m)): (14)

The combined matrix

Q=

[
A

T

]
(15)

is then a q× q matrix which provides a transformation of the coordinate system (x1; x2; : : : ; xq) into
a coordinate system (z1; z2; : : : ; zq) via z =Qx, whereupon x =Q−1z.
If we partition z′ = (z1; z2; : : : ; zm; zm+1; : : : ; zq) into z′ = (u′; v′), where u′ = (z1; z2; : : : ; zm) and v′ =

(zm+1; : : : ; zq), then

z =

[
u

v

]
=Qx =

[
A

T

]
x =

[
Ax

Tx

]
=

[
c

Tx

]
(16)

under restrictions (9). Thus, the transformation �xes the �rst m coordinates at the desired restricted
values, but leaves free the remaining q−m coordinates which specify points in the space restricted
by Ax = c. Consider the inverse of Q. This is of the form

Q−1 =
[
A′(AA′)−1;T′] : (17)

AA′ is non-singular because of our assumption below (9) that the restrictions are linearly indepen-
dent. It is easy to verify that QQ−1 = Iq because of conditions (14). It follows that Q−1Q= I also,
because the inverse is unique. The quadratic portion of the �tted model function (1) is thus, using
x =Q−1z, with z from (16) and Q−1 from (17),

x′Bx = z′(Q−1) ′BQ−1z = [c′; v′]

[
(AA′)−1A

T

]
B[A′(AA′)−1;T′]

[
c

v

]
(18)

= [c′(AA′)−1A + v′T]B[A′(AA′)−1c + T′v] (19)

= v′TBT′v + 2v′TBA′(AA′)−1c + c′(AA′)−1ABA′ (AA′)−1c; (20)
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after reduction. This gives us the quadratic portion of ŷ in terms of v and c. For the linear portion
of ŷ, we obtain

x′b= z′ (Q−1) ′b= [c′; v′]

[
(AA′)−1A

T

]
b= c′(AA)−1Ab+ v′Tb: (21)

The transformed form of (1) is now b0 + Eq. (21) + Eq. (20), namely

ŷ = d0 + v′{Tb+ 2TBA′ (AA′)−1c}+ v′TBT′v; (22)

where

d0 = b0 + c′(AA′)−1Ab+ c′(AA′)−1ABA′ (AA′)−1c: (23)

DiFerentiating this transformed version (22) of ŷ once with respect to v, and setting the result to
zero, we obtain the stationary point in the restricted space from

2TBT′v + 2TBA′ (AA′)−1c + Tb= 0; (24)

with solution

vs =−(TBT′)−1{ 12Tb+ TBA′ (AA′)−1c}: (25)

Substituting (25) into (22) and canceling several terms leads to the predicted response at the restricted
stationary point as

ŷ s = d0 − v′s(TBT
′)vs; (26)

where d0 is given in (23). We note that, in the no-restrictions case with T= I;A= 0; c= 0, so that
v= x, Eq. (25) reduces to Eq. (4), as it should. Under the same specialization, Eq. (26) reduces to
(8). Because

x =Q−1z = A′(AA′)−1c + T′v; (27)

we can obtain the stationary point in the space subject to the restrictions as

xs = A′(AA′)−1c + T′vs (28)

in terms of the original coordinates. This point is not usually, of course, the stationary point in
the full x-space, which is often unattainable because of the restrictions and so would no longer be
relevant anyway. Note that Axs =AA′(AA′)−1c+AT′vs = c, by applying (14), as it should, because
xs is in the restricted space. It is also clear that xs is the same whatever choice is made for T. For
if another choice, T2 =PT is made, where P is a square (m−q)× (m−q) non-singular matrix such
that T2 satis�es (14), it will be found that the P’s cancel out when T2 is inserted in (28) in place
of T. The result of (28) does, of course, depend on A; c, and the coe1cients of the �tted model.
By replacing the curly bracket in (22) using (25), we can re-write (22) in the form

ŷ = d0 − 2v′TBT′vs + v′TBT′v: (29)
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Subtracting (26) from (29) and then factorizing the result gives

ŷ − ŷ s = v′s(TBT′)vs − 2v′TBT′vs + v′TBT′v

= (v − vs)′ TBT′(v − vs): (30)

Suppose, we now move the origin to the stationary point of Eq. (25) by choosing new coordinate
values Z= v − vs and substituting v = Z+ vs into Eq. (30). This leads immediately to the form

ŷ = ŷ s + Z′TBT′Z; (31)

where ŷ s is de�ned in Eq. (26). There are no �rst-order terms in Z in this equation, which means
that we can convert to canonical form by repeating the same steps as used previously between
Eqs. (4) and (5), but with the role of B now being given to the matrix TBT′. Suppose that
�1; �2; : : : ; �q−m are the q − m eigenvalues of TBT′ and let M = {m1;m2; : : : ;mq−m} denote a cor-
responding matrix of orthonormal eigenvectors. Write 	 = diagonal{�1; �2; : : : ; �q−m}. Note that we
employ the same sort of notation given previously between Eqs. (4) and (5); however, the dimen-
sions are reduced by the number of linear restrictions, and so are now q − m rather than q. The
rotated orthogonal axes are now of the form

W =M′Z=M′(v − vs) =M′T(x− xs) (32)

from Eqs. (27) and (28), and the surface can now be expressed as

ŷ = ŷ s +W′	W = ŷ s +
q−m∑
i=1

�iW 2
i : (33)

The stationary point lies where all Wi = 0. Individual axes are determined by the conditions that
q− m− 1 (that is, all but one) of the Wi are zero.
The numerical coe1cients attached to the elements of x in (32) are the rows of M′T. How-

ever M′TA′ = 0; see (14). Thus, the evaluation of the product M′TA′, which should be 0 within
rounding error, provides a useful numerical check that the calculations (32) have been correctly per-
formed. Speci�cally, in examples where A contains a row (1=q1=2; 1=q1=2; : : : ; 1=q1=2), the coe1cients
of x1; x2; : : : ; xq, in each Wi will add to zero.
In applications with linear restrictions, canonical reduction can give rise to several possible out-

comes. Our �rst concern is typically whether or not the stationary point lies within the appropriate
mixture space, which would be the full mixture region if only the mixture restriction applied. If it
does, we can then investigate the shape taken by the �tted surface within the restricted space. It
will then also be informative to evaluate the coordinates where the new W -axes intersect, and exit,
the boundaries of the restricted region. When the stationary point is outside the region of interest,
the behavior of the surface around the stationary point is usually not relevant, particularly when
the stationary point is far away. However, it may still be useful to see if any of the canonical
axes passes through the restricted region and, if any do, to determine predicted values of the �tted
response surface along such axes. In cases where canonical reduction is not fruitful, performing a
full ridge analysis is then the best course of action; see Hoerl (1987), Peterson (1993) and Draper
and Pukelsheim (2002). We next provide two illustrative examples of canonical reduction in mixture
problems.
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5. Three ingredients mixture example (Bures et al., 1992)

We illustrate some of the details above via a three-ingredient (q=3) example in the usual mixture
space x1 +x2 +x3 =1 (m=1), leading to a canonical reduction in q−m=2 dimensions. Consider the
�tted mixture model in three ingredients ŷ =−0:00658x1 − 0:00243x2 + 0:00367x3 + 0:34265x1x2 +
0:47074x1x3 + 0:14115x2x3, derived from selected data for the proportional shrinkage of a mixture
of three ingredients forming an arti�cial medium for growing plants. We have q = 3; b0 = 0; b′ =
(−0:00658;−0:00243; 0:00367),

B=




0 0:171325 0:23537

0:171325 0 0:070575

0:23537 0:070575 0


 ;

A =
(
1
31=2

;
1
31=2

;
1
31=2

)
; c =

1
31=2

and

T=


− 1

21=2
0

1
21=2

1
61=2

− 2
61=2

1
61=2


 :

The rows of T are simply the normalized orthogonal polynomials of �rst and second order. Then
from Eq. (25), v′s = (0:0104; 0:3882) so that, from Eq. (28), x′s = (0:484; 0:016; 0:499), which is a
point just inside the mixture space near the x2 = 0 boundary; see Fig. 1. The two eigenvalues of
TBT′ are (−0:2550;−0:0632), with a corresponding matrix of eigenvectors of

M =

[
0:9474 0:3200

−0:3200 0:9474

]
:

The canonical form of the �tted surface is now

ŷ = ŷ s − 0:2550W 2
1 − 0:0632W 2

2 ;

where ŷ s=11:62. This form indicates (see Box and Draper, 1987, p. 338) a set of elliptical contours
centered at the point xs. The negative signs indicate a maximum response of 11.62 at the stationary
point W1 = W2 = 0. The lengths of the major axes of the ellipses are in the ratio of (0:255)−1=2 :
(0:0632)−1=2, which is approximately 1:2; see Fig. 1. The q − m= 3− 1 = 2 canonical axes in the
space x1 + x2 + x3 = 1 are given via (32) as

W1 =−0:801x1 + 0:261x2 + 0:539x3 + 0:114;
W2 = 0:160x1 − 0:774x2 + 0:613x3 − 0:371:

(We note that the x-coe1cients in each W add to zero, within rounding error, as explained below
Eq. (33).) By setting W1 = 0, then setting each xi = 0 in turn, i = 1; 2; 3, while maintaining the
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Fig. 1. Canonical reduction for Example 1. (The dots are the locations of the data points.)

mixture restriction, we obtain points of intersection with the mixture boundaries with coordinates

(0; 2:35;−1:35); (0:49; 0; 0:51) and (0:35; 0:65; 0);

indicating that the W2-axis, de�ned by W1 = 0, meets the x1 = 0 boundary well outside the mixture
region but intersects the x2 = 0 and x3 = 0 boundaries at valid mixture points.
Similarly, when we let W2 =0, and then set each xi=0 in turn, i=1; 2; 3, again while maintaining

the mixture restriction, we obtain the intersections

(0; 0:17; 0:83); (0:53; 0; 0:47); (1:23;−0:23; 0);
so that the W1-axis cuts across the x1=0 and x2=0 boundaries within the mixture space restrictions;
however, the W1-axis meets the x3 = 0 boundary outside the mixture space. By substituting for
the centroid (x1; x2; x3) = (13 ;

1
3 ;
1
3) in the W -equations above, we �nd that it lies at (W1; W2) =

(0:114;−0:371). This enables us to determine which direction of each axis is the positive one in
the canonical equation. (These directions, the choices of which are made by the convention written
into the program used to obtain eigenvalues and eigenvectors, are needed to interpret the locations
of points on the response surface in the restricted space.) All these remarks are illustrated in Fig. 1.
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6. Five ingredients mixture example (Kissell and Marshall, 1962)

This example gave rise to a �tted second-order response surface of form (1) with

b=




−1605003
4487

559

−7418
−13347



;

B=




0 1731252 1674333 1427295 1904909

1731252 0 −6202 912 7783

1674333 −6202 0 15718 4486

1427295 912 15718 0 41439

1904909 7783 4486 41439 0



;

A =
[
1√
5
; 1√

5
; 1√

5
; 1√

5
; 1√

5

]
; c = 1√

5

and

T=




− 2
101=2

− 1
101=2

0
1
101=2

2
101=2

2
141=2

− 1
141=2

− 2
141=2

− 1
141=2

2
141=2

− 1
101=2

2
101=2

0 − 2
101=2

1
101=2

1
701=2

− 4
701=2

6
701=2

− 4
701=2

1
701=2



:

Again the rows of T are normalized orthogonal polynomials, here of orders 1–4. The stationary
point is at xs = (0:335;−1:872; 9:084;−3:783;−2:763) well outside the mixture region. None of the
major axes passes through the region of interest, which is a subregion of the mixture space de�ned
by x1 + x2 + x3 + x4 + x5 = 1. Canonical reduction tells us relatively little here, and it would be
necessary to use ridge analysis to negotiate the restricted region instead. See Hoerl (1987), Peterson
(1993) and Draper and Pukelsheim (2002).
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