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Abstract. From the inception of the proportional representation movement it
has been an issue whether larger parties are favored at the expense of smaller
parties in one apportionment of seats as compared to another apportionment.
A number of methods have been proposed and are used in countries with a
proportional representation system. These apportionment methods exhibit a
regularity of order, as discussed in the present paper, that captures the pref-
erential treatment of larger versus smaller parties. This order, namely majori-
zation, permits the comparison of seat allocations in two apportionments. For
divisor methods, we show that one method is majorized by another method if
and only if their signpost ratios are increasing. This criterion is satisfied for
the divisor methods with power-mean rounding, and for the divisor methods
with stationary rounding. Majorization places the five traditional apportion-
ment methods in the order as they are known to favor larger parties over
smaller parties: Adams, Dean, Hill, Webster, and Je¤erson.

1 Introduction

Payment in proportion to usage, or payment in proportion to services ren-
dered is a well-established and accepted principle. In the political context, the
counterpart is proportional representation. One instance is the apportion-
ment of a number of seats to each party proportionally to the number of
votes received; another, the apportionment of a number of seats to each state
proportionally to the population counts. In the case of monetary payments
there appears to be little discourse on methodology methods. In contrast,
electoral apportionment has led to political controversy and bitter battles.
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From its inception in the Constitutional Congress of 1787 in the United
States, and from the proportional representation movement in Europe that
came into existence before 1900, alternative methods for electoral apportion-
ment have been proposed. Why is there a problem? For monetary payments
money is considered a practically infinitely divisible commodity, and we are
able to allocate arbitrary fractions. This is not the case for electoral appor-
tionments. Each seat is a single entity, and the gain or loss of an individual
seat is usually considered of significant importance by the political antago-
nists.

From the very beginning there has been the issue whether, of two com-
peting apportionment methods, one favors larger parties at the expense of
smaller parties more than the other. The rival apportionment methods are
associated with well-known names – Thomas Je¤erson, Alexander Hamilton,

John Quincy Adams, Daniel Webster, to name but a few. For an excellent
introduction to the history and mathematical formulation of the subject, we
recommend the seminal monograph by Balinski and Young (2001).

In order to set the stage for the exposition that follows, we refer to the
example exhibited in Table 1. A perusal of this example shows a regularity in
the ordering from apportionment mA to apportionment mJ , capturing the
preferential treatment of larger parties versus smaller parties. Apportionment
mA consistently favors smaller parties, in comparison with apportionment mJ

which favors larger parties; the other apportionments lie in-between.
What is clear from Table 1 is that there is a movement uphill from appor-

tionment mA to apportionment mJ . At each step there is a transfer of one seat.
The question is how to capture the structural implications of these transfers.
Di¤erent descriptions of the move from one column to the next could be
conceived. The ordering proposed in the present paper is called majorization.
It has the advantage of providing a complete characterization, and has its
roots in studies of equality and inequality. For a review of its history and its
formal properties see Marshall and Olkin (1979); an earlier influential fore-
runner is the book on inequalities by Hardy et al. (1934). In the electoral lit-

Table 1. An example for six parties and 36 seats (Balinski and Young 2001, p. 96)

Adams Dean Hill Webster X Je¤erson
Votes mA mD mH mW mX mJ

27 744 10 10 10 10 10 11
25 178 9 9 9 9 10 9
19 951 7 7 7 8 7 7
14 610 5 5 6 5 5 5
9 225 3 4 3 3 3 3
3 292 2 1 1 1 1 1

100 000 36 36 36 36 36 36

������! ������! ������! ������! ������!

The apportionment in any column leads to the apportionment in the next column by
the transfer of one seat from a smaller party to a larger party, as is indicated by the
arrows.
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erature, Raschauer (1971), Pennisi (1998) and Grilli di Cortona et al. (1999)
are the only sources we know of that mention the notion of majorization.

The majorization ordering has been a helpful tool in many fields of science,
including mathematics, statistics, chemistry, physics, and others. It should be
emphasized, though, that the ordering has an independent and early origin in
the social sciences. The political science and economics approach dates to
Dalton (1920, 1935) who was led to the majorization ordering in his study of
inequality of incomes.

Dalton’s starting point was the simple idea that if a portion of income is
transferred from a poor person to a rich person, then inequality is increased.
Thus, in this ordering the case where each person has the average is the most
equal, and the case where one person has all the wealth is the most unequal.
Formally, if an initial vector m of incomes is altered by a transfer from poor
to rich to obtain a vector m 0, then m 0 represents higher income inequality than
does m. For example, when 3 units of a good must be shared by three indi-
viduals, then the apportionment m ¼ ð1; 1; 1Þ is less unequal than the appor-
tionment m 0 ¼ ð2; 1; 0Þ which, in turn, is less unequal than m 00 ¼ ð3; 0; 0Þ. This
type of comparison generates the majorization ordering.

More specifically, majorization provides an ordering between two
vectors m ¼ ðm1; . . . ;mlÞ and m 0 ¼ ðm 0

1; . . . ;m
0
lÞ, with ordered elements

m1 b � � � b ml and m 0
1 b � � � b m 0

l, and with an identical component sum
m1 þ � � � þ ml ¼ m 0

1 þ � � � þ m 0
l ¼ M. The ordering states that all partial

sums of the k largest components in m are dominated by the sum of the k

largest components in m 0, that is,

m1 a m 0
1;

m1 þ m2 a m 0
1 þ m 0

2;

..

.

m1 þ � � � þ mk a m 0
1 þ � � � þ m 0

k;

..

.

m1 þ � � � þ ml�1 a m 0
1 þ � � � þ m 0

l�1;

m1 þ � � � þ ml ¼M ¼ m 0
1 þ � � � þ m 0

l:

ð1Þ

We denote this ordering by m 	 m 0, and say that m is majorized by m 0, or
equivalently, that m 0 majorizes m.

In Table 1, this ordering applies as one moves from the first apportionment
column step by step to the last apportionment column. Thus the subtotal of
seats assigned to a set of large parties is growing (or remains constant), and
in this precise sense larger parties are increasingly better o¤.

It seems worthwhile to emphasize the descriptive power of the majoriza-
tion concept. For instance, Nohlen (2000, p. 106) compares two apportion-
ments, similar to the Webster apportionment mW and the Je¤erson appor-
tionment mJ in our Table 1. He makes a point that a transition from mW to
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mJ may result in allocating an additional seat to any one of the parties except
the smallest. Conversely, the loss of a seat could occur to any one of the par-
ties except the largest. This sounds as if the transfer of a seat occurs in a ran-
dom fashion. This is not so, and there is the systematic structure of transfer-
ring a seat from a smaller party to a larger party. Majorization provides the
appropriate language to capture the structural properties. The total number of
seats of the k largest parties in the apportionment mW is less than or equal to
the corresponding total in apportionment mJ . Equivalently, the total number
of seats of the k smallest parties in apportionment mW is larger than or equal
to what those small parties total in apportionment mJ .

Although our focus is on the five traditional apportionment methods
named in the United States after John Quincy Adams, James Dean, Josef A.

Hill, Daniel Webster, and Thomas Je¤erson, similar deliberations occurred
in Europe (United Kingdom, Belgium, France, Germany, and others). We
briefly give some biographical details, and refer to Kopfermann (1991) for
additional information.

Baron Edward Hugh John Neal Dalton (*26 August 1887, y13 February
1962) was born in Wales and educated in Cambridge (Marshall and Olkin
1997, p. 522). He was on the faculty of the London School of Economics,
and later served as Parliamentary Undersecretary at the Foreign O‰ce and
as Chancellor of the Exchequer under Prime Minister Clement Attlee.

Victor d’Hondt (*20 November 1841, y30 May 1901) was professor of tax
law and civil rights at the University of Ghent (Carlier 1901; Beatse 1913).
Hondt, an activist in the Association Réformiste Belge, published widely on
the apportionment method that, in Europe, was named after him; see, for
instance, Hondt (1885). In the USA, his method is associated with the name
of Thomas Je¤erson.

Eduard Hagenbach-Bischo¤ (*20 February 1833, y23 December 1910) was
a physics professor at the University of Basel (Huber 1960). As a member of
the Canton legislature he became a proponent of the method d’Hondt, and
simplified the calculations to obtain its apportionments. Of his many pub-
lications on the subject we mention the booklet (1905).

André Sainte-Laguë (*20 April 1882, y18 January 1950) was a professor of
applied mathematics at the Conservatoire national des arts et métiers in Paris
(Chastenet 1994). Early in his career, while teaching at the Lycée in Douai,
he published two papers (1910a,b) analyzing the optimality properties of
apportionment methods. Sainte-Laguë gave special attention to the divisor
method with standard rounding, which in Europe then was named after him
whereas in the USA it originated with Daniel Webster. Another apportion-
ment method that Sainte-Laguë considered is the divisor method with geo-
metric rounding, which is the method currently in use for the apportionment
of seats in the US House of Representatives (method of equal proportions,
Hill method).

George Pólya (*13 December 1887, y7 September 1985) was one of the
eminent mathematicians of the last century (Olkin and Pukelsheim 2001).
His Collected Papers comprise four volumes of 2430 pages; the Pólya (1987)
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Picture Album is a fascinating document of the scientific history of his cen-
tury. Pólya authored five papers (1918, 1919a–d) scrutinizing the various
apportionment methods then in use in Switzerland.

Section 2 discusses another relation from the literature that is closely
related to majorization. Section 3 extends the notion of majorization from
apportionment vectors to apportionment methods. In Sect. 4 we describe
divisor methods of apportionment, and the signpost sequences that determine
the methods. Section 5 contains our principal results, providing necessary and
su‰cient conditions for majorization among divisor methods. Section 6 serves
to explicate the results. An Appendix provides proofs of the three propositions
in Sect. 5.

2 A relation akin to majorization

A key feature of majorization is that it is a partial ordering, that is, it is
reflexive, transitive, and antisymmetric (Marshall and Olkin 1979, p. 13).
Balinski and Young (2001, p. 118) and Balinski and Rachev (1997, p. 15)
discuss the following relation. An apportionment is said to give up to another
apportionment if, in every pairwise comparison of a larger party i with a
smaller party j, party i gains seats or party j loses seats. That is, it cannot
happen that the larger party i loses seats and at the same time the smaller
party j gains seats.

This relation fails to be transitive, and hence does not qualify as a partial
ordering. To clarify the notion of transitivity in this context, consider three
apportionments of 21 seats:

Party m m 0 m 00

1 10 11 11

2 6 5 5

3 3 3 4

4 2 2 1
aa aa aa
21 21 21

ð2Þ

��!---------!
��!

Moving from m to m 0, party 2 gives up one seat to party 1. From m 0 to m 00,
party 4 gives up one seat to party 3. But comparing m with m 00, party 2 loses
a seat whereas party 3 gains a seat, whence the transitivity property does not
generally hold.

The following lemma proves that the relation of one apportionment giving
up to another one implies majorization. The converse is not generally true,
as evidenced in (2). Thus majorization orders more apportionments, just
enough so as to achieve transitivity.

Lemma. Consider two apportionments m1 b m2 b � � �b ml and m 0
1 b

m 0
2 b � � �b m 0

l. If, for all i < j, we have mi a m 0
i or mj b m 0

j then m is

majorized by m 0. The converse is not generally true.
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Proof. The proof is indirect. Suppose that m is not majorized by m 0, then for
some i we have

m1 a m 0
i ;

m1 þ m2 a m 0
1 þ m 0

2;

..

.

m1 þ � � � þ mi�1 a m 0
1 þ � � � þ m 0

i�1;

m1 þ � � � þ mi�1 þ mi > m 0
1 þ � � � þ m 0

i�1 þ m 0
i :

Consequently, we must have mi > m 0
i . However, the total sums are equal, so

that it must be that mj < m 0
j for some j > i. For the converse part, we refer

to (2) where, although m is majorized by m 00, we have m2 ¼ 6 > 5 ¼ m 00
2 and

m3 ¼ 3 < 4 ¼ m 00
3 . The proof of the Lemma is complete.

Balinski and Young (2001, p. 118) prove that, for divisor methods, monot-
onicity of the signpost ratios as demanded in Proposition 1 below is su‰cient
for their relation to apply. Similarly, Saari (1994, p. 307; 1995, p. 271) finds
that signpost ratio monotonicity is su‰cient so that ‘‘one method favors large
states more than another method’’ without, however, providing a formal def-
inition for his relation. Here, we show that monotonicity of the signpost ratios
is a necessary and su‰cient condition for two divisor methods to be compa-
rable in the majorization partial ordering.

Thus we hope that the present paper o¤ers a technical as well as a con-
ceptual contribution. Technically, signpost ratio monotonicity transpires to be
not only su‰cient but also necessary; this could have been formulated entirely
relative to the giving up-relation. Conceptually, we much prefer to proceed to
the majorization partial ordering which has proved extremely powerful in
many other instances where the issue is to assess fairness of competing allo-
cations.

3 Majorization of two apportionment methods

In proportional representation electoral systems involving l parties, an appor-
tionment is calculated from given vote counts v1; v2; . . . ; vl, for a given district
magnitude M. Of course, the vote counts vi are whole numbers. However,
there are other applications where the proportional allocation of M items is
based on nonnegative weights vi, see Balinski and Young (2001, p. 96). In gen-
eral, then, we assume that we are given l weights vi A ½0;yÞ, and that these
weights are ordered from largest to smallest, v1 b v2 b � � �b vl.

A procedure that governs the apportionment calculations is called an
apportionment method. Let A be the apportionment method to be used. The
apportionment result then consists, practically almost always, of a single
apportionment vector m ¼ ðm1;m2; . . . ;mlÞ. However, a general method must
also accommodate tied situations, for instance when l parties with identical
weights share lþ 1 seats. Balinski and Young (2001, p. 96) discuss such ties
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in detail. The set of all apportionment vectors that A associates with a
weight vector v ¼ ðv1; v2; . . . ; vlÞ is denoted by AðvÞ.

For two specific apportionment vectors m and m 0, the majorization rela-
tion (1) presupposes vectors with decreasingly ordered elements. Therefore
we restrict attention to apportionment methods that guarantee this property.
A method A is said to be weakly weight monotone if

v1 > v2 > � � � > vl ) m1 b m2 b � � �b ml

for all ðm1;m2; . . . ;mlÞ A AðvÞ, see Balinski and Young (2001, p. 147). We can
now extend the notion of majorization from (1), to also apply to two appor-
tionment methods.

Definition. Given two weakly weight monotone apportionment methods A and

A 0, we say that A is majorized by A 0, denoted by A 	 A 0, if either they are

equal or, for every number l of participating parties and for all weights

vi > v2 > � � � > vl b 0 and for each district magnitude M, every apportionment

m A AðvÞ is majorized by every apportionment m 0 A A 0ðvÞ.

In the set of all apportionment methods, this relation is a partial ordering.
That is, it is reflexive ðA 	 AÞ, transitive ðA 	 A 0 and A 0 	 A 00 implies
A 	 A 00Þ, and antisymmetric ðA 	 A 0 and A 0 	 A implies A ¼ A 0Þ. Naturally,
there is no necessity that any two arbitrary apportionment methods A and A 0

be comparable in the majorization ordering. The main result of the present
paper is to establish a necessary and su‰cient condition for determining
majorization, under the assumption that the two apportionment methods are
divisor methods.

A brief comment may be in order why the notion of weak weight monot-
onicity concentrates on strictly ordered weights v1 > v2 > � � � > vl, there-
by neglecting any tie vi ¼ vj. For example, consider the weight vector
v ¼ ð45; 25; 25; 5Þ, and choose M ¼ 10. Due to the tie v2 ¼ v3 ¼ 25, the divi-
sor method with rounding down (Je¤erson, Hondt) results in two apportion-
ment vectors,

m ¼ ð5; 3; 2; 0Þ; ~mm ¼ ð5; 2; 3; 0Þ;
of which only the first appears in decreasing order as needed in (1). Requiring
only weakly ordered weights v1 b v2 b � � � b vl would thus exclude standard
methods from further consideration.

4 Divisor methods and signpost sequences

A divisor method of apportionment is defined through numbers sðkÞ in the
interval ½k; k þ 1
 such that the sequence sð0Þ; sð1Þ; . . . is strictly increasing.
Balinski and Young (2001, p. 64) picture an individual number sðkÞ as a
‘‘signpost’’ or ‘‘dividing point’’ splitting the interval ½k; k þ 1
 into a left part
where numbers are rounded down to k, and a right part where numbers are
rounded up to k þ 1. For sðkÞ itself, there is the option to round down to k

or to round up to k þ 1, thus possibly generating multiplicities.
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The numbers rounded this way are the quotients of the weights and a
divisor, v1=d; v2=d; . . . ; vl=d, for some choice of divisor d > 0 common to all
weights. If party i gets mi seats, then necessarily sðmi � 1Þa vi=d a sðmiÞ.
The divisor d is adjusted so that the sum of all seats becomes equal to the
district magnitude, m1 þ m2 þ � � � þ ml ¼ M. Clearly, every divisor method
is weakly weight monotone.

Alternatively, the apportionment m can be found by treating a divisor
method as a rank-index method (Balinski and Young 2001, p. 142). That is,
the M largest ratios vi=sðkÞ for i ¼ 1; . . . ; l and k ¼ 0; 1; . . . are determined,
and for each occurrence of party i it gets one seat.

To illustrate these ideas, let A be a divisor method with initial signposts
sð0Þ ¼ 0:5 and sð1Þ ¼ 1:4. If two parties have vote counts v1 ¼ 75 and v2 ¼ 25,
then two seats are apportioned according to m ¼ ð2; 0Þ. With divisor d ¼ 51,
this is readily checked:

v1

d
¼ 75

51
¼ 1:47 > 1:4 ¼ sð1Þ ) m1 ¼ 2;

v2

d
¼ 25

51
¼ 0:49 < 0:5 ¼ sð0Þ ) m2 ¼ 0:

Suppose A 0 is another divisor method with initial signposts s 0ð0Þ ¼ 0:5 and
s 0ð1Þ ¼ 1:6. With the same vote counts as before, the two seats are now
apportioned according to m 0 ¼ ð1; 1Þ. With divisor d ¼ 49, we obtain

v1

d 0 ¼
75

49
¼ 1:53 < 1:6 ¼ s 0ð1Þ ) m 0

1 ¼ 1;

v2

d 0 ¼
25

49
¼ 0:51 > 0:5 ¼ s 0ð0Þ ) m 0

2 ¼ 1:

The growth of the signpost sð1Þ from 1.4 to 1.6 makes it increasingly di‰cult
for the larger party to secure as many seats as before.

Two common signpost sequences are the power-mean signposts

s1ðk; pÞ ¼ kp

2
þ ðk þ 1Þp

2

� �1=p
; �ya p ay; ð3Þ

and the stationary signposts

s2ðk; qÞ ¼ k þ q ¼ ð1� qÞk þ qðk þ 1Þ; 0a q a 1: ð4Þ
In (3), the three exceptional values p ¼ �y; 0;y need special mentioning.
The case p ¼ �y has s1ðk;�yÞ ¼ k, the other extreme is s1ðk;yÞ ¼ k þ 1.
For p ¼ 0 we obtain the geometric mean, s1ðk; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p
. We also note

that p ¼ 1 gives the arithmetic mean, and p ¼ �1 the harmonic mean.
The power-mean signpost sequences (3) with p ¼ �y;�1; 0; 1;y yield,

in turn, the five traditional apportionment methods: the Adams method
(divisor method with rounding up), the Dean method (divisor method with
harmonic rounding), the Hill method (divisor method with geometric round-
ing, method of equal proportions), the Webster method (divisor method with
standard rounding, method of Sainte-Laguë), and the Je¤erson method (divi-
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sor method with rounding down, method d’Hondt, method of Hagenbach-
Bischo¤ ).

Both (3) and (4) represent averages of k and k þ 1, with s1ðk; pÞ being the
mean of power p, and s2ðk; qÞ the arithmetic mean with weights 1� q and q.
These two families have some member sequences in common. For example,
p ¼ �y and q ¼ 0 yield the value k; whereas p ¼ 1 and q ¼ 1=2 yield
k þ 1=2; finally p ¼ y and q ¼ 1 yield k þ 1. In general, however, di¤erent
values of the parameters p and q generate di¤erent signpost sequences.

For large values of k, the divisor methods with power-mean rounding
reduce to three methods only, the Adams method ðp ¼ �yÞ, the Webster
method ð p ¼ 1Þ, and the Je¤erson method ð p ¼ yÞ. This is due to the limit-
ing relationship

lim
k!y

ðs1ðk; pÞ � kÞ ¼
1 for p ¼ y;

1=2 for �y < p < y;

0 for p ¼ �y:

8<
:

The limit is obtained using l’Hospital’s rule, as x ¼ 1=k tends to zero in

s1ðk; pÞ � k ¼ ½fð1þ ð1þ xÞpÞ=2g1=p � 1
=x. Thus, in the intervals ½k; k þ 1

with k large, the signposts move to the midpoints k þ 1=2 when p is finite,
whereas they coincide with the left endpoints k or the right endpoints k þ 1
when p is infinite. In contrast, the stationary signpost family (4) maintains its
richness also for large values of k.

The two signpost sequences (3) and (4) generate ‘‘compromises’’ between
k and k þ 1. However, other such sequences can be constructed. For exam-
ple, the signpost s3ðk; qÞ ¼ k1�qðk þ 1Þq, for 0a q a 1, is a weighted geo-
metric mean of k and k þ 1 (Dorfleitner and Klein 1999, p. 151). The asso-
ciated family of divisor methods includes the Adams method ðq ¼ 0Þ, the Hill
method ðq ¼ 1=2Þ, and the Je¤erson method ðq ¼ 1Þ.

The three one-parameter signpost families s1; s2; s3 can be embedded in
the single two-parameter family

s0ðk; p; qÞ ¼ ðð1� qÞkp þ qðk þ 1ÞpÞ1=p; �ya p ay; 0a q a 1:

As with (3), the exceptional values p ¼ �y; 0;y require separate definitions,
namely s0ðk;�y; qÞ ¼ k, and s0ðk; 0; qÞ ¼ k1�qðk þ 1Þq, and s0ðk;y; qÞ ¼
k þ 1. This yields s1ðk; pÞ ¼ s0ðk; p; 1=2Þ, and s2ðk; qÞ ¼ s0ðk; 1; qÞ, and
s3ðk; qÞ ¼ s0ðk; 0; qÞ. Yet another family is generated by s4ðk; pÞ ¼
logððepk þ epðkþ1ÞÞ=2Þ1=p, for �ya p ay, beginning with the Adams
method ( p ¼ �y), passing through the Webster method ( p ¼ 0), and ending
with the Je¤erson method ( p ¼ y).

5 Principal results for divisor methods

We first show that majorization among two divisor methods requires a
monotonicity relationship involving the signpost sequences that define the
two methods.
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Proposition 1. Let A be a divisor method with signpost sequence sð0Þ; sð1Þ;
sð2Þ; . . . and let A 0 be another divisor method with a di¤erent signpost sequence

s 0ð0Þ; s 0ð1Þ; s 0ð2Þ; . . . . Then method A is majorized by method A 0 if and only if

the signpost ratios sðkÞ=s 0ðkÞ are strictly increasing in k.

The proof of Proposition 1 is deferred to the Appendix. It is always the
case that, as k tends to infinity, the signpost ratios sðkÞ=s 0ðkÞ is bounded
from below and from above by k=ðk þ 1Þa sðkÞ=s 0ðkÞa ðk þ 1Þ=k. Hence
the sequence of signpost ratios converges to the limit one, as k tends to infin-
ity. Therefore, under Proposition 1, the sequence converges to one from
below. This entails sðkÞ < s 0ðkÞ for all k, meaning that a transition from
method A to A 0 moves all signposts to larger values. Only k ¼ 0 is an excep-
tion; when s 0ð0Þ ¼ 0, we set sð0Þ=0 ¼ 0 for sð0Þ ¼ 0 and sð0Þ=0 ¼ y for
sð0Þ > 0.

We now return to the specific divisor methods defined by the power-mean
signposts (3), and by the stationary signposts (4).

Proposition 2. The divisor method with power-mean rounding of order p is

majorized by the divisor method with power-mean rounding of order p 0 if and

only if p a p 0.

Proposition 3. The divisor method with stationary rounding of shift q is major-

ized by the divisor method with stationary rounding of shift q 0 if and only if

q a q 0.

We again defer the proofs to the Appendix. Proposition 2 puts the five
traditional divisor methods into the majorization ordering

Adams 	 Dean 	 Hill 	 Webster 	 Je¤erson:

That the apportionment results of the traditional methods are ordered by
majorization is plainly visible in the congressional apportionments for the US
censuses 1791–2000 provided in Balinski and Young (2001, pp. 158–176).
Proposition 3 is already implicit in Theorem 2.8 of Balinski and Rachev
(1997, p. 15).

6 Some examples

Table 2 provides another example. The total number of votes is 100 000, as it
is in Table 1. Hence in both examples, the entries in the first column can be
read as a count of votes (42 919 etc.), or they can be interpreted as weights
giving the proportion of votes (0.42919 etc.). It is interesting to discuss how
the examples in Tables 1 and 2 compare.

Table 1 presents the complete series of apportionments obtained from the
power-mean divisor methods, and from the stationary divisor methods; they
happen to coincide. Table 2 is an example where the two series di¤er. In both
cases, the series starts with the Adams apportionment, passes through the
Webster apportionment, and terminates with the Je¤erson apportionment. Of
course, there exist other apportionments than the five traditional ones of
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Adams, Dean, Hill, Webster and Je¤erson, such as X in Table 1. In Table 1
all seat transfers occur over minimum distance, between pairs of contiguous
parties. Table 2 shows that this need not be so in general; in the top part from
the Hill apportionment to apportionment Xp a seat is transferred over maxi-
mum distance, from the smallest party to the largest party.

In the present examples, the power-mean series and the stationary series
happen to comprise an equal number of apportionments (six in Table 1, and
eight in Table 2). In other examples, not quoted here, these numbers di¤er.
Furthermore, in those instances where the two series in Table 2 yield distinct
results, the stationary apportionment happens to be majorized by the power-
mean apportionment (Xq 	 Xp, and Yq 	 Yp). It is a consequence of Prop-
osition 1 that this need not hold in general.

In order to verify that Tables 1 and 2 present the complete series of

Table 2. An example for ten parties and 100 seats (Balinski and Rachev 1997, p. 14)

Votes Apportionments obtained from the power-mean divisor methods
42 919 41 42 43 43 43 44 44 45
13 048 13 13 13 13 13 13 13 13
10 879 11 11 11 11 11 11 11 11
10 581 10 10 10 11 11 11 11 11
9 547 10 9 9 9 10 9 10 10
5 708 6 6 6 6 6 6 6 5
2 502 3 3 3 3 2 2 2 2
1 898 2 2 2 2 2 2 1 1
1 461 2 2 2 1 1 1 1 1
1 457 2 2 1 1 1 1 1 1
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� �
Dean Xp Yp

Adams Hill Webster Je¤erson
� � � � � �

Xq Yq
� �

Votes Apportionments obtained from the stationary divisor methods
42 919 41 42 42 43 43 44 44 45
13 048 13 13 13 13 13 13 13 13
10 879 11 11 11 11 11 11 11 11
10 581 10 10 11 11 11 11 11 11
9 547 10 9 9 9 10 9 10 10
5 708 6 6 6 6 6 6 5 5
2 502 3 3 3 3 2 2 2 2
1 898 2 2 2 2 2 2 2 1
1 461 2 2 2 1 1 1 1 1
1 457 2 2 1 1 1 1 1 1
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����

���!
����

����
����

���!

�����!
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����!
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The apportionment series from the power-mean divisor methods (top), and from the
stationary divisor methods (bottom) need not coincide, as in this example. However,
both apportionment series start with the Adams apportionment, proceed by transfer-
ring a seat from a smaller party to a larger party, and end in the Je¤erson apportion-
ment. Within each series, every apportionment is majorized by its successor.
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apportionments obtainable from the power-mean divisor methods and from
the stationary divisor methods, we argue as follows.

Generally, let sðkÞ denote the signposts defining a divisor method, and let
the vote counts v1; v2; . . . ; vl be given. Assume that party i is apportioned mi

seats, and party j is apportioned mj seats. A transfer of a seat from party j to
party i changes the respective allocations to mi þ 1 and mj � 1 seats, and is
possible only if there is a tie,

vi

d
¼ sðmiÞ;

vj

d
¼ sðmj � 1Þ: ð5Þ

In a tied situation such as (5) there is the option for parties i and j to be allo-
cated mi and mj seats, or mi þ 1 and mj � 1 seats, respectively. Elimination
of the divisor d in equations (5) yields a single equation,

sðmiÞ
sðmj � 1Þ ¼

vi

vj

: ð6Þ

In a parametric family of signposts, equation (6) turns into a formula that
determines the parameter value giving rise to a tie.

Specifically, we first consider the stationary signposts s2, and start with the
Adams apportionment mA. Inserting s2ðmA

i ; qÞ and s2ðmA
j � 1; qÞ from (4) into

(6), we obtain the formula for q:

qAði; jÞ ¼
mA

i vj � ðmA
j � 1Þvi

vi � vj

: ð7Þ

Because of Proposition 3 we know that a transfer from party j to party i is
possible only when i < j, that is, when party i is larger than party j. Thus,
among l parties, there are lðl� 1Þ=2 pairs to be considered. For each pair
i < j, formula (7) provides a solution qAði; jÞ. Let qA be the smallest of these
numbers. In other words, as q increases from zero upwards, of all the ties
that are possible the one at qA materializes first.

For the l ¼ 6 parties of Table 1 there are ð6Þð5Þ=2 ¼ 15 pairings, and 15
comparisons of formula (7) are required. The minimum qA is between parties
5 and 6, for which

qA ¼ qAð5; 6Þ ¼ ð3Þð3292Þ � ð1Þð9225Þ
9225� 3292

¼ 651

5933
¼ 0:109 725:

At this value qA, the Adams apportionment mA is tied with the Dean appor-
tionment mD. Similarly, the value qD ¼ qDð4; 5Þ ¼ 2295=5385 ¼ 0:426 184 is
calculated where the Dean apportionment is tied with the Hill apportionment,
and so on. The rounding step of any divisor method is rather sensitive to
determining the correct value of q, so that a large number of decimals is usu-
ally required.

For the power-mean signposts s1 from (3), Eq. (6) takes the form

m
p
i þ ðmi þ 1Þp

ðmj � 1Þp þ m
p
j

 !1=p
¼ vi

vj

;
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which does not admit a closed form solution in p. However, because the left
hand side is monotone in p, the solution is readily obtained numerically. For
instance, using the computer program Maple for the data in Table 1, we
obtain pA ¼ pAð5; 6Þ ¼ �3:363 395, and pD ¼ pDð4; 5Þ ¼ �0:265 628.

Appendix: Proofs

Proof of Proposition 1. For the direct part, let A and A 0 be two distinct
divisor methods satisfying A 	 A 0. We need to show that sðkÞ=s 0ðkÞ <
sðk þ 1Þ=s 0ðk þ 1Þ for all k. Our proof is indirect, assuming the contrary,

sðk þ 1Þ
s 0ðk þ 1Þ a

sðkÞ
s 0ðkÞ for some integer k b 0: ð8Þ

The left hand side of (8) is bounded from below by ðk þ 1Þ=ðk þ 2Þ > 0,
whence sðkÞ > 0. Strict monotonicity of the signpost sequence entails
a ¼ sðk þ 1Þ=sðkÞ > 1. Now the interval

I ¼ sðk þ 1Þ
sðkÞ ;

s 0ðk þ 1Þ
s 0ðkÞ

� �
ð9Þ

is nonempty, by (8), and its left endpoint a satisfies 1 < a < y. If the interval
is nondegenerate we can choose two integers v1 and v2 such that v1=v2 lies
in its interior. Because of v1=v2 b a > 1, we get v1 > v2. If the interval
degenerates, I ¼ fag, we can still define two weights v1 ¼ a=ð1þ aÞ > v2 ¼
1=ð1þ aÞ > 0, with v1=v2 ¼ a A I . This construction provides us with a situa-
tion of two parties, with respective weights v1 > v2 > 0. We choose a district
magnitude M ¼ 2k þ 2.

We claim that m ¼ ðk þ 2; kÞ is an apportionment under method A. We
establish our claim by verifying the max-min inequality of Balinski and
Young (2001, p. 100), according to which m is an apportionment under
method A if and only if

max
v1

sðk þ 2Þ ;
v2

sðkÞ


 �
amin

v1

sðk þ 1Þ ;
v2

sðk � 1Þ


 �
: ð10Þ

That is, we need to check four inequalities,

v1

sðk þ 2Þa
v1

sðk þ 1Þ ; ð10aÞ

v1

sðk þ 2Þa
v2

sðk � 1Þ ; ð10bÞ

v2

sðkÞa
v1

sðk þ 1Þ ; ð10cÞ

v2

sðkÞa
v2

sðk � 1Þ : ð10dÞ

But (10a) follows from sðk þ 1Þ < sðk þ 2Þ, (10b) from v1=v2 a
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s 0ðk þ 1Þ=s 0ðkÞa sðk þ 2Þ=sðk � 1Þ, (10c) from sðk þ 1Þ=sðkÞa v1=v2, and
(10d) from sðk � 1Þ < sðkÞ. If (8) is fulfilled with k ¼ 0 then the inequality
in (10) has right hand side simply equal to v1=sð1Þ, whence (10b, d) become
irrelevant.

We next claim that m 0 ¼ ðk þ 1; k þ 1Þ is an apportionment under method
A 0. For this to hold true the max-min inequality takes the form

max
v1

s 0ðk þ 1Þ ;
v2

s 0ðk þ 1Þ


 �
amin

v1

s 0ðkÞ ;
v2

s 0ðkÞ


 �
: ð11Þ

Again we need to check four inequalities,

v1

s 0ðk þ 1Þa
v1

s 0ðkÞ ; ð11aÞ

v1

s 0ðk þ 1Þa
v2

s 0ðkÞ ; ð11bÞ

v2

s 0ðk þ 1Þa
v1

s 0ðkÞ ; ð11cÞ

v2

s 0ðk þ 1Þa
v2

s 0ðkÞ : ð11dÞ

Now (11a) follows from s 0ðkÞ < s 0ðk þ 1Þ, (11b) from v1=v2 a s 0ðk þ 1Þ=s 0ðkÞ,
(11c) from s 0ðkÞ=s 0ðk þ 1Þa sðk þ 1Þ=sðkÞa v1=v2, and (11d) from s 0ðkÞ <
s 0ðk þ 1Þ.

In summary, the methods A and A 0 produce the apportionments m ¼
ðk þ 2; kÞ and m 0 ¼ ðk þ 1; k þ 1Þ where, evidently, m is not majorized by m 0.
This contradicts the assumption A 	 A 0, thus invalidating (8).

For the converse part, we follow the lines of argument in Balinski and
Young (2001, p. 118), and Balinski and Rachev (1997, p. 15). Let the signpost
ratios be strictly increasing. For some vote counts v1; v2; . . . vl and district
magnitude M, let m be an apportionment under method A and m 0 an appor-
tionment under A 0. We prove, for all vi > vj, that mi a m 0

i or mj b m 0
j ; this

forces m to be majorized by m 0, see the Lemma in Sect. 2. Otherwise, there
exist two weights vi > vj satisfying

mi > m 0
i and mj < m 0

j : ð12Þ

In view of the above mentioned max-min inequality there are divisors d for
A and d 0 for A 0 such that

vi

d
b sðmi � 1Þ; vj

d
a sðmjÞ;

vi

d 0 a s 0ðm 0
i Þ;

vj

d 0 b s 0ðm 0
j � 1Þ:

This leads to the first and last inequalities in

vi

vj

a
s 0ðm 0

i Þ
s 0ðm 0

j � 1Þ a
s 0ðmi � 1Þ

s 0ðmjÞ
<

sðmi � 1Þ
sðmjÞ

a
vi

vj

: ð13Þ

The second inequality follows from (12), whereas the strict inequality holds by
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assumption on the monotonicity of the signpost ratios. But (13) is a contra-
diction, whence (12) cannot hold true. The proof is complete.

Proof of Proposition 2. In (3), consider the power-mean signposts s1ðk; pÞ and
s1ðk; rÞ for p < r. We aim to establish monotonicity of the signpost ratios
s1ðk; pÞ=s1ðk; rÞ.

In case k ¼ 0 and p a 0, we have s1ð0; pÞ ¼ 0 and the convention 0=0 ¼ 0
from Sect. 5 secures

s1ð0; pÞ=s1ð0; rÞ ¼ 0 < s1ð1; pÞ=s1ð1; rÞ:
In all other cases, that is when k > 0 or p > 0, we show that

gðrÞ ¼ s1ðk þ 1; rÞ
s1ðk; rÞ

<
s1ðk þ 1; pÞ

s1ðk; pÞ ¼ gðpÞ;

namely, the function gðrÞ is strictly decreasing in r. Upon setting x1 ¼ k þ 2,
x2 ¼ k þ 1 and y1 ¼ k þ 1, y2 ¼ k, we may rewrite gðrÞ in the form

gðrÞ ¼ ððk þ 1Þr þ ðk þ 2ÞrÞ1=r

ðkr þ ðk þ 1Þ rÞ1=r
¼

P2
i¼1 xr

iP2
j¼1 yr

j

 !1=r
when r0 0. The continuous continuation to r ¼ 0 is the ratio of the geometric
means, gð0Þ ¼ ðx1x2Þ1=2=ðy1 y2Þ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 2Þ=k

p
.

Because x1 > x2 > 0 and y1 > y2 b 0 and y1=x1 > y2=x2, Proposition
5.B.3 in Marshall and Olkin (1979, p. 130) applies and states that gðrÞ is
decreasing in r. Moreover, the function g is analytic, whence if it is con-
stant on some open interval then it is constant on the whole real line. This
is not the case, as it decreases from gð�yÞ ¼ ðk þ 1Þ=k down to gðyÞ ¼
ðk þ 2Þ=ðk þ 1Þ. Hence g is strictly decreasing, and the proof is complete.

Proof of Proposition 3. In (4), consider the stationary signposts s2ðk; qÞ and
s2ðk; rÞ for q < r. Straightforward calculation gives s2ðk þ 1; qÞs2ðk; rÞ�
s2ðk; qÞs2ðk þ 1; rÞ ¼ r � q > 0. Hence s2ðk; qÞ=s2ðk; rÞ is strictly increasing in
k. The proof is complete.

We gratefully acknowledge the expert remarks of two referees.
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