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To investigate the behavior of a response y over a speci� ed region of interest by � tting a second-
order response surface, standard ridge analysis provides a way of following the locus of, for example,
a maximum response, moving outward from the origin of the predictor variable space. Because this
approach does not require one to view the � tted regression surface as a whole, this important technique
may be applied even when visualization of the surface is dif� cult in several dimensions. The ridge
trace view enables practitioners to assess and understand the typically complex interplay between the
input variables as the response improves. To explore a subspace de� ned by a linear restriction on
the predictors, a situation discussed infrequently in the literature and never in the context of mixture
experiments, we show how a modi� cation of ridge regression can be used generally to investigate
second-order mixture surfaces with many ingredients, particularly when the experimental mixture space
is itself limited by further linear equalities in addition to the mixture requirement. In some cases, the
ridge origin need not be moved into the mixture space to achieve the desired results, and any form of
the second-orde r � tted model, whether of Scheffé type, Kronecker type, or something in between, can
be accommodated.

KEY WORDS: Kronecker model; Mixture model; Projection; Response surface; Restriction on
mixture spaces; Ridge analysis; Scheffé model; Second-order model.

1. INTRODUCTION

Ridge analysis was � rst introduced in the context of general
response surface methodology by A. E. Hoerl (1959, 1962,
1964). It was further investigated by Draper (1963), who
proved results that Hoerl had suggested without proof, and
was then extended by Myers and Carter (1973) for the so-
called “dual response” (DR) problem. Related work has been
done by Del Castillo, Fan, and Semple (1997, 1999) and
Semple (1997). R. W. Hoerl (1985) provided a wide-ranging
discussion.

Only one application of ridge analysis to mixture problems
has appeared. Typically, q nonnegative fractional ingredients
x11 x21 : : : 1 xq must satisfy the mixture restriction

x1 C x2 C ¢ ¢ ¢C xq D 1

(or some linear restriction that can essentially be reduced to
that form). In that one application, by R. W. Hoerl (1987),
ridge analysis was applied by � rst invoking a transformation
that moved from the q-dimensional origin 401 01 : : : 1 05 to
the centroid 4 1

q
1 1

q
1 : : : 1 1

q
5 of the 4q ƒ 15-dimensional mixture

space. Our ridge paths could also begin from such a centroid,
but, as we show later, ridge analysis can proceed in a mixture
space around any point without preliminary transformation.
We also show that additional linear equalities in the mixture
ingredients are easily incorporated into a very general method
that leads to great � exibility in applying ridge analysis tech-
niques to mixture problems. When linear inequalities are also
involved, we can examine the ridge traces and easily determine
whether the ridges pass into and/or out of the regions de� ned
by the inequalities by checking the coordinate values of the

xs on the paths. When any ingredient value becomes negative
or exceeds the applicable inequalities, a path has gone outside
the region and is then of no interest unless it returns.

2. A MOTIVATING EXPERIMENT

The pharmaceutical mixture example of Anik and Sukumar
(1981) is an excellent example of a mixture problem that
entails additional linear equalities and inequalities on the mix-
ture ingredients and thus might pro� t from this ridge analysis.
This work was also motivated by our desire to simplify the
application of ridge analysis to mixture problems. Thanks to
the help of the reviewers, the method is now very general in
its application.

Anik and Sukumar (1981) conducted a study of � ve ingre-
dients, one of which, x5, was held constant at .10 (10% of the
mixture), so that the remaining ingredients, x11 x21 x3, and x4,
were constrained by the requirement that

x1 C x2 C x3 C x4 D 090 (1)

As a reviewer commented, (1) could be renormalized via xi D
09ui , so that u1 Cu2 C u3 Cu4 D 1. We do not do this, because
it introduces a step that is not needed and that would have to
be undone in later calculations. (However, such a renormal-
ization is usually needed when constructing diagrams as we
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show in Sec. 4.2.) The essence of our method is that the ridge
paths are obtained directly (and more easily) without any such
additional steps.

Anik and Sukumar wanted to examine various combinations
of the four ingredients, to � t a quadratic model to a response
variable y (solubility), and to seek the maximum response.
Each of the four ingredients was restricted to a range within
60117, as shown in Table 1. Hence the authors decided to use
an experimental design based on the “extreme vertices” of
the restricted region (see Table 1). This excellent method was
� rst suggested by McLean and Anderson (1966), and Anik
and Sukumar (1981) aimed to show how useful the method
can be. To implement it, one generates the extreme points (or
“corners”) of the region and then selects the design points
from vertices, edge (one-dimensional) centroids, face (two-
dimensional) centroids, and so on. The last of these groups is
the single point represented by the overall centroid, calculated
by averaging all vertices. The method has various subtleties
(which we do not describe; see McLean and Anderson 1966
or Cornell 1990) because the number of extreme vertices (and,
consequently, of the various centroids) depends on the spe-
ci� c ranges of the x’s, which determine the consequent region
shape. Anik and Sukumar (1981) were led to use the speci� c
14-point experimental design shown in Table 1.

The experimental design of Anik and Sukumar requires
additional explanation to avoid potential confusion. Figure 1(a)
shows the triangular subspace x3 D 0; within it, the other
restrictions create the � ve-sided � gure. The inner triangle and
the pentagon in Figure 1(b) play the same respective roles
for the x3 D 008 subspace. The outer triangle of Figure 1(b)
is the same triangle as in Figure 1(a) and makes the point
that the x3 D 008 slice of the four-dimensional simplex is
smaller than the x3 D 0 slice. Figure 1(c) shows the two slices

Table 1. Experimental Design Used by Anik and Sukumar (1981)
Together With the Lower and Upper Limits That De’ ne the

Mixture Space of Interest and the Response Data
Obtained From the Experiment

Point no. x1 x2 x3 x4 y

Lower limit 010 010 0 030
Upper limit 040 040 008 070

Vertices

1 010 010 0 070 300
2 010 010 008 062 703
3 015 040 0 035 409
4 011 040 008 031 804
5 040 015 0 035 806
6 040 011 008 031 1207

Edge centroids (averages of indicated vertices)

7 (112) 010 010 004 066 501
8 (516) 040 013 004 033 1008
9 (314) 013 040 004 033 606

10 (11315) 0216 0216 0 0468 404
11 (21416) 0203 0203 008 0414 709
12 (416) 0255 0255 008 031 904
13 (315) 0275 0275 0 035 508

Overall centroid
14 021 021 004 044 603

NOTE: x1 , polyethylene glycol 400; x2 , glycerine; x3 , polysorbate 60; x4 , water; y , solubility,
(mg/mL). Note that x1 C x2 C x3 C x4 D 090 for each point.

superimposed as they would be seen in a birds-eye view from
the x3 D 090 vertex. We further note that for each pentagon,
two pairs of vertices are quite close together. Consequently,
Anik and Sukumar (1981, p. 898) averaged these close pairs
of points and called the resulting averages “vertices” of their
region. Thus in Table 1, “vertex 3” (.15, .40, 0, .35) is the
average of true vertices (.10, .40, 0, .40) and (.20, .40, 0, .30);
“vertex 4” (.11, .40, .08, .31) is the average of true vertices
(.10, .40, .08, .32) and (.12, .40, .08, .30); “vertex 5” (.40,
.15, 0, .35) is the average of true vertices (.40, .10, 0, .40)
and (.40, .20, 0, .30), and “vertex 6” (.40, .11, .08, .31) is
the average of true vertices (.40, .10, .08, .32) and (.40, .12,
.08, .30).

We revisit this example in Section 4 to illustrate how ridge
analysis can be applied to mixture experiments with regions
restricted by linear equalities and inequalities in the ingredi-
ents. We follow the approach of the original authors in � tting
a second-order (or quadratic) Scheffé model,

y D ‚1x1 C ‚2x2 C ‚3x3 C ‚4x4 C ‚12x1x2 C ‚13x1x3

C ‚14x1x4 C ‚23x2x3 C ‚24x2x4 C ‚34x3x4 C …1 (2)

via least squares using the data in Table 1 (see Scheffé 1958,
1963). A discussion of the various equivalent second-order
model forms that can be � tted in a mixture problem was given
by Prescott, Dean, Draper, and Lewis (2002). For purposes of
interpretation, it does not matter which of the several alterna-
tive possible models is � tted, because the resulting response
contours will be identical in every case. The ridge paths are
exactly the same if other choices are made; in fact, Anik and
Sukumar (1981) � tted a model containing a constant term, one
of several possibilities. The equation resulting from � tting (2)
by least squares is

Oy D 490716x1 C 80414x2 C 29095x3 C 403365x4

ƒ 580671x1x2 ƒ 27083x1x3 ƒ 740902x1x4

C 10020x2x3 C 33081x3x40 (3)

Note that the nonlinear blending term x2x4 is missing in (3).
When the Scheffé model is used with the design of Table 1,
the resulting X 0X matrix is singular. Regression of the x2x4

column onto the remaining X columns produces an exact � t on
the columns x11 x21 x1x31 x1x4, and x2x3. After rearrangement
of terms and factorization, the exact � t equation can be written
as

4x1 ƒ x254x3 C 2x4 ƒ 075 D 00 (4)

For every data point in Table 1, either the � rst or the second
factor of (4) is 0. Because x2x4 enters the surface � t in the
last position of the terms mentioned earlier, we chose to elim-
inate it. The contours of the � tted response surface and the
associated ridge paths are not affected by which term is elim-
inated, but substitution of speci� c numbers into the formulas
of Section 3 will change appropriately. Overall, however, the
� tted model is less � exible than it could have been with a
better choice of design.

We explore the ridges of this surface in two ways, both cov-
ered by the theory in Section 3. First, we seek the ridges that
emanate from a selected “focal point” of the space restricted
by (1). Later, we add boundary restrictions called for by the
exploration.
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Figure 1. The Triangular Subspaces (a) x3 D 0, Containing the Pentagon De’ ned by the Restrictions on the Mixture Ingredients, and (b) x3 D .08
(inner triangle), Containing the (different) Pentagon De’ ned by the Restrictions, (c) The Two Slices are Superimposed as in a View Downward
From the x3 D .90 Vertex of the Mixture Space. By joining corresponding pentagon vertices, one de’ nes the entire restricted region.

3. RIDGE ANALYSIS WITH MULTIPLE LINEAR
RESTRICTIONS, INCLUDING APPLICATIONS

TO MIXTURE EXPERIMENTS

3.1 Ridge Analysis: Basic Method

In its original, unrestricted form (Hoerl 1959, 1962, 1964),
ridge analysis was used on a second-order � tted response
to obtain a set of paths going outward from the origin
4x11 x21 : : : 1 xq 5 D 40101 : : : 105 of the factor space. Two
of these paths provided the maximum response (path of
steepest ascent) and the minimum response (path of steepest
descent) on spheres of increasing radius R, beginning at the
origin. Other paths, in which the response was neither a
maximum nor a minimum, but was locally (on the sphere)
stationary, could also be found. These other paths, which
might be of interest in practical problems, for example, if they
provide good, but not optimum, response values at lower cost,
typically do not start at the origin, but appear suddenly when

certain radii values (which depend on the speci� c response
surface under study) are attained.

The basic ridge analysis method proceeds as follows. Sup-
pose that the � tted second-order surface is written as

Oy D b0 C x0bC x0Bx1 (5)

where

x0 D 4x11 x21 : : : 1 xq 51 b0 D 4b11 b21 : : : 1 bq51

and

B D

0
BBBBBBBBB@

b11

1

2
b12 ¢ ¢ ¢

1

2
b1q

b22 ¢ ¢ ¢
1
2

b2q

0 0 0
000

sym bqq

1
CCCCCCCCCA

(6)
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is symmetric. Then (5) is the matrix format for the second-
order � tted equation

Oy D b0 C b1x1 C b2x2 C ¢ ¢ ¢C bqxq C b11x
2
1 C b22x

2
2

C ¢ ¢ ¢ C bqqx2
q C b12x1x2 C b13x1x3 C ¢ ¢ ¢ C bqƒ11qxqƒ1xq 0 (7)

The stationary values of (7), subject to being on a sphere
centered at the origin,

x0x ² x2
1 C x2

2 C ¢ ¢ ¢C x2
q D R21 (8)

are obtained by considering the Lagrangian function

F D b0 C x0bC x0Bxƒ ‹4x0x ƒ R250 (9)

Differentiating (9) with respect to x (which can be achieved
by differentiating with respect to x11 x21 : : : 1 xq in turn and
rewriting these equations in matrix form) gives

¡F

¡x
D b C 2Bxƒ 2‹x0 (10)

Setting (10) equal to a zero vector leads to

24B ƒ ‹ I5x D ƒb0 (11)

We can now select a value for ‹. If 4B ƒ ‹ I5ƒ1 exists, which
will happen as long as ‹ is not an eigenvalue of B, then we
obtain a solution x for a stationary point of Oy,

x D ƒ
1

2
4B ƒ ‹ I5ƒ1b1 (12)

and can then � nd the radius R, from (8), associated with the
solution x from (12). Both R and x are functions of ‹.

The theory of Draper (1963) tells us that if we select values
of ‹ from Cˆ downward, then we shall be on the “maximum
Oy” path. Values of ‹ from ƒˆ upward yield the “minimum
Oy” path. Intermediate paths lie in the ranges of ‹ between the
eigenvalues of B.

We next discuss how these methods can be widened in gen-
eral to facilitate, among other applications, their use in mixture
experiments.

3.2 Ridge Analysis Around a Selected Focus

Ridge analysis can be started from any selected “focal
point,” or “focus,” which we denote here by f. ( In mixture
experiments, for example, f could be chosen as a central point,
perhaps even the exact centroid, of some prede� ned restricted
region in which the experimental runs were con� ned.) When
f 6D 0, (8), x0x D R2, would be replaced by

4x ƒ f504x ƒ f5 D R20 (13)

Note that if f were an unconstrained mixture region
centroid with all coordinates identical—that is, if f D 41=q,
1=q1 : : : 11=q50 D 41=q510—then

R2 D 4x ƒ f504xƒ f5 D x0xƒ 2f 0xC f 0f

D x0xƒ 2=q C 1=q

D x0xƒ 1=q0 (14)

In this special case, the focus need not be moved at all,
because the restriction is now x0x D R2 C 1=q, essentially a
rede� nition of the radius value. The physical meaning of this
is that any sphere centered at the origin 401 01 : : : 105 even-
tually expands so that its intersection with the mixture space
is a subsphere centered at the mixture space centroid. (For a
diagram, see Draper and Pukelsheim 2000, p. 135.)

3.3 Adding Linear Restrictions

Suppose that we wish to perform ridge analysis subject to
a set of linear restrictions of the form

Ax D c1 (15)

where A is a given m� q matrix of linearly independent rows,
normalized so that the sum of squares of each row is 1, and c
is a given m� 1 vector. For example, if we were investigating
a mixture problem with ingredients 4x11 x21 : : : 1 xq5 restricted
by

10x ² x01 ² x1 C x2 C ¢ ¢ ¢C xq D 11 (16)

we could choose A D 41=q1=2541111 : : : 115 and c D 1=q1=2

4m D 15. If this mixture space were further restricted to the
plane

4�11�21 : : : 1 �q5x D �1 (17)

where all �’s were prespeci� ed and �2
1 C �2

2 C ¢ ¢ ¢ C �2
q D 11

then

A D
"

1=q1=2 1=q1=2 ¢ ¢ ¢ 1=q1=2

�1 �2 ¢ ¢ ¢ �q

#
and c D

"
1=q1=2

�

#

(18)

(m D 2), and so on. (Of course, any set of noncontradictory,
linearly independent linear restrictions can be adopted. We are
not con� ned only to mixtures where the components add to
1, although mixtures are our emphasis here.) The dimension
m of A must be such that m < q in general. When m D q,
we are reduced to a single point in the x-space, and all paths
coalesce into a single point. Note that, because f must lie in
the restricted space, Af D c.

Under conditions (13) and (15), we now consider the
Lagrangian function

G D b0 C x0bC x0Bxƒ ‹64xƒ f504x ƒ f5ƒ R27 ƒ ˆ04Axƒ c51
(19)

where ‹ and the elements 4ˆ11 ˆ21 : : : 1 ˆm5 forming ˆ0 are
Lagrangian multipliers. Differentiation with respect to x leads
to

¡G

¡x
D bC 2Bx ƒ 2‹4x ƒ f5 ƒ A0ˆ1 (20)

and setting (20) equal to a zero vector implies that

24Bƒ ‹ I5x D A0ˆ ƒ b ƒ 2‹f 0 (21)

For many given values of ‹ (the speci� c choices are discussed
later), we can write a solution for x as

x D
1

2
4Bƒ ‹ I5ƒ14A0ˆ ƒ bƒ 2‹f50 (22)

This x must satisfy (15), which implies that

c D
1

2
A4B ƒ ‹ I5ƒ1A0ˆ ƒ

1

2
A4Bƒ ‹ I5ƒ14b C 2‹f51 (23)

whereupon

ˆ D 8A4B ƒ ‹ I5ƒ1A09ƒ182c C A4B ƒ ‹ I5ƒ14bC 2‹f590 (24)

This leads to the following solution sequence:

1. Choose values of ‹ appropriate for the desired path
(explained later).
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2. Solve (24) for ˆ.
3. Obtain x from (22).
4. Evaluate R2 as in (13).

Then the point x will be on the desired path of stationary
values and will lie on a sphere of radius R. The question is
now whether the chosen value of ‹ places us on the maximum
path, the minimum path, or some intermediate path.

3.4 Determining the Ridge Paths Under
Linear Restrictions

In the unrestricted ridge analysis described in Section 3.1,
the matrix of second derivatives,

¡F

¡xi ¡xj

D 24Bƒ ‹ I51 (25)

is key in determining which path is selected. The eigenvalues
of B, that is, the values that result from solving

—B ƒ ‹ I— D 01 (26)

form the dividing points for the various paths of stationary
values. In general, there are q eigenvalues and 2q paths (see
Draper 1963). Those eigenvalues are not appropriate for the
restricted problem, however; instead, we need the eigenval-
ues of a lower-dimension matrix that makes allowance for the
linear restrictions.

We recall that, with m restrictions as in (15), A is a given
m � q matrix with m linearly independent rows of length q,
normalized to make the sum of squares of each row equal to
l. Let T be a 4q ƒ m5 � q matrix each of whose 4q ƒ m5 rows
is orthogonal to every row of A, and such that TT 0 D Iqƒm.
That is, the columns of A0 form a basis for the restriction
space, and those of T 0 form an orthonormal basis for the space
orthogonal to A0. It follows that

TA0 D 01 of size 4q ƒ m5� m1

AT 0 D 01 of sizem � 4q ƒ m51

TT 0 D Iqƒm 0

(27)

The combined matrix,

Q D
"

A

T

#
1

is then a q � q matrix, which provides a transformation
of the coordinate system 4x11 x21 : : : 1 xq5 into coordinates
z11 z21 : : : 1 zq via z D Qx, whereupon x D Qƒ1z.

If we partition z0 D 4z11 z21 : : : 1 zm1 zmC11 : : : 1 zq5 into z0 D
4u0, v05, where u0 D 4z11 z21 : : : 1 zm5 and v0 D 4zmC11 : : : 1 zq5,

z D
"

u

v

#
D

"
A

T

#
x D

"
Ax

Tx

#
D

"
c

Tx

#
(28)

under the restrictions (15). Consider the inverse of Q, which
is of the form

Qƒ1 D 6A04AA05ƒ11T 070 (29)

AA0 is nonsingular because of our assumption after (15) that
the restrictions are linearly independent. We verify (29) by
writing

QQƒ1 D
"

A

T

#
6A04AA05ƒ11T 07 D Iq (30)

as a result of conditions (27). It follows that Qƒ1Q D I also,
because the inverse is unique.

Thus, using x D Qƒ1z, with z from (28) and Qƒ1 from (29),
the � rst quadratic portion of the Lagrangian function (19) is

x0Bx D z04Qƒ150BQƒ1z

D 6c01 v07

"
4AA05ƒ1A

T

#
B6A04AA05ƒ11T 07

"
c

v

#
(31)

D 6c04AA05ƒ1A C v0T7B6A04AA05ƒ1c C T 0v7 (32)

D v0TBT 0v C 2v0TBA04AA05ƒ1c

C c04AA05ƒ1ABA04AA05ƒ1c1 (33)

after reduction. From the result (33), if we set B D I as a
special case and apply (27), then we obtain, for the second
quadratic portion of (19),

‹x0x D ‹v0v C 0 C ‹c04AA05ƒ1c0 (34)

Differentiating the transformed version of (19) twice with
respect to v, and noting that constants and terms linear in v
drop out, we obtain

¡G

¡vi ¡vj

D 24TBT 0 ƒ ‹ I5 (35)

in place of (25).
Note that the size of this square matrix (35) is 4q ƒm5, not

q, because T is 4q ƒ m5 � q. We see that when ‹ is such that
(35) is positive de� nite, we have a minimum, whereas if (35)
is negative de� nite, we have a maximum. If (35) is inde� nite,
intermediate stationary values are indicated. In fact, the theory
at this point is a complete parallel of that of Draper (1963). If
the eigenvalues of TBT 0 are Œ1 µ Œ2 µ ¢ ¢ ¢ µ Œqƒm, arranged in
order with due regard to sign, then, subject to the restrictions
Ax D c, the following conditions hold:

a. Choosing ‹ > Œqƒm provides a locus of maximum Oy as
R changes.

b. Choosing ‹ < Œ1 provides a locus of minimum Oy as R

changes.
c. Choosing Œ1 µ ‹ µ Œqƒm gives intermediate stationary

values.

As in the unrestricted case, when ‹ D Œi exactly for i D
1121 : : : 1 q ƒ m, R is in� nite (see Draper 1963).

Note that we do not need these eigenvalues to obtain the
paths, but only to distinguish among paths. For the loci of
maximum Oy and minimum Oy, the eigenvalues are not neces-
sary, because choosing ‹ values decreasing from ˆ gives the
path of maximum Oy, whereas using values increasing from
ƒˆ gives the path of minimum Oy. However, knowing the
eigenvalues helps us select appropriate ‹ values for interme-
diate paths.

We now apply these results to the mixture problem
described by Anik and Sukumar (1981).

TECHNOMETRICS, AUGUST 2002, VOL. 44, NO. 3
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4. GENERALIZED RIDGE ANALYSIS
OF THE EXPERIMENT

The foregoing section describes, in a very general context,
the calculation details necessary to � nd the ridge paths as
they stream from a selected focus. [The important sequence of
(repetitive) operations for this lies below (24).] We now apply
this theory to the Anik and Sukumar (1981) dataset. Here,
q D 4, and from (3) and (1),

b0 D 01 (36)

b D

2
666664

490716

80414

29095

403365

3
777775

1 (37)

B D

2
666664

0 ƒ2903355 ƒ130915 ƒ370451

ƒ2903355 0 501 0

ƒ130915 501 0 160905

ƒ370451 0 160905 0

3
777775

1 (38)

A D
³

1

2
1

1

2
1

1

2
1

1

2

´
and c D 09=2 D 0450 (39)

4.1 The First Set of Ridge Paths

We choose the centroid of the points 1–6 in Table 1 as the
focus f of the ridge system, namely f D 40211 0211 0041 04450.
The distances from f to the six points 1121 : : : 16 of Table 1
are 0966, 0763, 0703, 0773, 0703, and 0804; these values will
give some comparative perspective to the R values in Table 2.
The eigenvalues of B are not relevant here because of the
restriction (39). Instead, we need the eigenvalues of the matrix
TBT 0 in (35). An appropriate T takes the form

T D

2
664

ƒ06708204 ƒ02236068 02236068 06708204

05 ƒ05 ƒ05 05

ƒ02236068 06708204 ƒ06708204 02236068

3
775 0

(40)

The reasoning behind this calculation is explained in
Section 3. The rows of T consist of the � rst-, second-, and
third-order orthogonal polynomials, normalized so that the
sum of the squared elements in each row equals 1. (See, e.g.,
Draper and Smith 1998, p. 466.) The three rows of T are
orthogonal to one another, the sum of their squares equals
1, and are all orthogonal to 1

2
10 D 4 1

2
1 1

2
1 1

2
1 1

2
5, which is the

normalized vector of coef� cients of the x’s in the mixture
restriction x1 C x2 C x3 C x4 D 090. The three eigenvalues of
TBT 0 are 4ƒ20004120521 460875, and the radius R becomes
in� nite when ‹ takes these eigenvalues. The ridge path of
maximum Oy (path A) is obtained given by choosing ‹ values
from ˆ (where the solution will be x D f , and where R D 0)
to 46087 (where the solution will be x D ˆ). The ridge of
minimum Oy (path F) will be given by choosing ‹ values from
ƒˆ (where the solution will be x D f) to ƒ20004 (where
the solution will be x D ƒˆ). Other ‹ values between the

eigenvalues will deliver four more paths, B, C, D, and E, of
stationary values of Oy (see Draper 1963).

Table 2 shows a selected representative set of values of ‹
(which we choose initially), of 4x11 x21 x31 x45 on the paths
designated, and of the resultant R and Oy values, derived from
the calculations given in Section 3. Path A, the maximum Oy
path, begins at the selected focus f , where R D 0 and Oy D 6027,
and moves quickly (see the x3 values) to the x3 D 008 boundary
and beyond, whereas the values of x1, x2, and x4 change only
slowly. This clearly shows the importance of variable x3 and,
unless the range of x3 can be extended past the x3 D 008 value,
indicates that further exploration of the � tted surface needs to
be carried out on the x3 D 008 face of the restricted region.

Figure 2, derived from the path A details in Table 2, shows
how the coordinates x11 x21 x3, and x4 and the predicted maxi-
mum response value Oy change versus R. Such a diagram could
also be drawn for any of the ridge paths that we provide and is
considered by many scientists to be the best way to view the
ridge results. It enables practitioners to assess and understand
the typically complex interplay between the mixture ingredi-
ents as the response improves. It also permits the addition of
a “cost” curve for the ingredients, or of any other curves mea-
suring selected qualities of the changing mixture. For reasons
of space, however, we provide only this one example, because
it duplicates the information in the corresponding table. We
recall that closed-form expressions for the dependency of xi

and Oy on R are not available. However, numerical computer
calculations are feasible, and these provided the details for
constructing the smooth lines of Figure 2. Alternatively, a
satisfactory working diagram can be obtained by plotting the
values given in Table 2.

Intermediate paths B and C have no points of practical inter-
est. The x1 values are negative from the eigenvalue ‹ D 46087
until about ‹ D 4105, where the x3 value reaches a minimum
of about x3 D 0358, well above the x3 upper limit for the
experimental region. The minimum R value of about 0379 is
attained at about ‹ D 40.

Intermediate paths D and E are also of no practical interest,
having negative x1 and x4 values throughout. Their minimum
radius lies beyond the range of R shown in Figure 2.

The minimum Oy path F begins, like path A at the selected
focus f , where ‹ D ƒˆ1R D 0, and Oy D 6027. As might be
anticipated from the behavior of path A, path E goes quickly to
the (opposite) x3 D 0 boundary, after which it is of no practical
interest because x3 must be nonnegative. Table 2 gives selected
‹ values, to a point where the predicted Oy has turned negative.

4.2 The Second Set of Ridge Paths

Because we are interested in maximizing Oy, we now explore
the surface on the x3 D 008 plane. (Had we been interested
in minimizing Oy, we would have gone to the x3 D 0 plane
instead.) The theory of Section 3 can again be applied, but
now with the addition of the linear equality x3 D 008. This
means that (39) is replaced by

A D
"

1
2

1
2

1
2

1
2

0 0 1 0

#
and c D

"
045

008

#
0 (41)
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Table 2. Ridge Paths for the Anik and Sukumar (1981) Data, Applying Only the
Mixture Restriction x1 + x2 + x3 + x4 D .9

Path ‹ x1 x2 x3 x4 R Oy

A (max) ˆ 0210 0210 0040 0440 0 6027
2000 0209 0207 0048 0436 0010 6064
1000 0208 0204 0056 0432 0020 7002
750 0207 0202 0062 0429 0026 7027
500 0206 0199 0072 0423 0038 7075
400 0205 0196 0080 0419 0048 8010
300 0204 0191 0092 0413 0062 8066
250 0203 0187 0102 0408 0074 9010
100 0201 0152 0181 0366 0170 12048
62 0230 0107 0243 0320 0259 15040
50 0441 0020 0244 0195 0437 21094
48 0920 ƒ0131 0168 ƒ0057 0940 55058

B, C, D, and E do not occur within the experimental region

F (min) ƒ90 0248 0273 ƒ0194 0573 0279 ƒ6026
ƒ100 0243 0266 ƒ0165 0556 0244 ƒ4055
ƒ200 0224 0238 ƒ0052 0490 0109 1069
ƒ436 0216 0223 0000 0461 0048 4032
ƒ500 0215 0221 0005 0459 0041 4058
ƒ700 0213 0218 0016 0453 0029 5008
ƒ900 0213 0216 0021 0450 0023 5035

ƒˆ 0210 0210 0040 0440 0000 6027

Figure 2. The Maximum Predicted Response Oy and Its Corresponding Positional Coordinates (x1, x2 ,x3, x4) Plotted Against R, the Distance
the Point Lies From the Focus f D ( .210, .210, .04, .440) 0 in the Space x1 + x2 + x3 + x4 D .90. The numerical details are given in Table 2.
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Repeating the calculations with these new restrictions requires
a new T,

T D
"

0267261 0534523 0 ƒ0801784

0771517 ƒ0617213 0 ƒ0154303

#
(42)

which leads to the eigenvalues of TBT 0 of 4ƒ0491450015. [The
two rows of T are 41121 01ƒ35 and 451 ƒ410115, renormal-
ized to have sum of squares 1.] There are now four ridge
paths, which we designate as A (maximum Oy), B, C, and D
(minimum Oy). A new focus needs to be chosen.

The current restricted region is shown in Figure 1(b). The
design points 2, 4, and 6 from Table 1 lie on this pentagon,
and we choose f D 402031 02031 0081 041350, their centroid. This
point lies at distances R D 02531 0241, and 0241 from points
214, and 6, and these numbers can be compared with the val-
ues of R that we see on the ridge paths shown in Table 3.
We recall that x3 D 008 throughout , and we show the paths in
Figure 3. The maximum Oy path crosses the x4 D 030 boundary
when ‹ is about 65095. As in all steepest ascent studies when a
boundary is met, one must now move along this boundary. We
postpone this for the moment to discuss the other three ridge
traces. Neither path B nor path C lies within the restricted
region, and their details are not given. The minimum Oy path D
moves downward until x1 is about 016 and then turns, cross-
ing the x2 D 010 boundary at roughly this x1 D 016 level; see
Figure 3.

4.3 The Third Set of Ridge Paths

To move along the boundary x4 D 030, we designate a
new focus f and a new matrix T. The endpoints of the
restricted region along the boundary are the corner points
40401 0121 0081 0305, near design point 6 in Table 1, and
40121 0401 0081 0305, near design point 4; see Figure 1. We
choose their centroid, namely f D 40261 0261 0081 03050. T is
now a normalized row vector orthogonal to the rows of A in
Ax D c, namely

2
664

05 05 05 05

0 0 1 0

0 0 0 1

3
775

2
666664

x1

x2

x3

x4

3
777775

D

2
664

045

008

030

3
775 0 (43)

Necessarily, T D 407071071ƒ070710710105, or the vector
with signs reversed. The sole eigenvalue of TBT0 is 29.3355,
which is ƒ 1

2
b12 where b12 is the regression coef� cient associ-

ated with x1x2. Only the path A of maximum Oy 4‹ > 29033555
and the path B of minimum Oy 4‹ < 29033555 exist. On these
paths, x3 D 008 and x4 D 030, and so x1 C x2 D 052. Thus
we can show the paths most simply by quoting only the x1

value, as we have done in Table 4. Path A is shown only
to the point x1 D 040 when the � rst corner point is reached
and we attain the maximum predicted response, Oy D 12081,
subject to the restrictions. Path B is shown only to x1 D 012
when the second corner point is reached. ( It is not the mini-
mum region response, which we would � nd by exploring the
x2 D 010 boundary, choosing f D 40251 0101 0081 04750 and T D
407071071 0101ƒ0707107) or the vector with signs reversed.)

We see that by a triple application of the ridge analysis tech-
nique, we have come to the predicted maximum response in
the restricted region, improving from Oy D 8009 in Table 2 to
Oy D 11082 in Table 3 to Oy D 12081 in Table 4.

5. SUMMARY AND DISCUSSION

Ridge analysis, due to A. E. Hoerl (1959, 1962, 1964), can
be applied to response surfaces, most usefully those of second-
order, to provide a curved direction of steepest ascent for Oy in
the space of the predictor variables x11 x21 : : : 1 xq . It is also
possible to determine a path of steepest descent or paths of
intermediate stationary values, by � nding the stationary values
of the � tted response Oy on a sphere of radius R, and follow-
ing the solutions as R expands. This technique is especially
useful on surfaces where q is large, in which case geometrical
visualization is often dif� cult. In this article the technique is
extended in a general way to mixture response surfaces. The
focus from which the curved paths emanate can be freely cho-
sen, and any linear equality restrictions, including the usual
mixture restriction x1 C x2 C ¢ ¢ ¢ C xq D 1, can be incorporated
into the analysis. In an illustration using data from Anik and
Sukumar (1981), this technique is applied in three stages to
take account of tightening restrictions on the best path caused
by factor space limitations, and to � nd the point in that space
of maximum predicted response. An advantage of this method
is that there is no need to change the initial x-coordinate sys-
tem, nor to use pseudocomponents, in any of the resulting
calculations.

We now brie� y discuss points that arise in connection with
this work:

1. The exact choice of focus f is not a crucial feature
of the restricted steepest ascent/descent procedure we have
described. After the � rst stage in our example, one might
have argued that because the path of maximum Oy entered the
x3 D 008 face of the restricted region at 402051 01961 0081 04195,
we should start again there. However, steepest ascent is a very
� exible procedure, and a rigid method for choosing f would
be inappropriate. Choosing some central point of the region
is always safe, barring pathologic examples.

2. The formulas that we have given also can be applied to
steepest ascent subject to linear restrictions when the model is
a � rst-order mixture model Oy D b1x1 C ¢ ¢ ¢C bqxq . In this case,
b0 D 0 and B D 0 in (19)–(24). The “eigenvalues of B” are all
0 and, by the choice of f, Af D c. The solution reduces to

x D f C 42‹5ƒ14 Iƒ A04AA05ƒ1A5b0 (44)

The choice of ‹ 2 601ˆ7 gives the straight-line steepest-ascent
direction, and ‹ 2 6ƒˆ1 07 gives the steepest-descent direction.
Note that when there are no linear conditions on x, A D 0, and
x ƒ f is proportional to b as required.

3. A reviewer pointed out that a move to a selected focus
f could be accompanied by changing to pseudocomponents, if
desired. This would involve a preliminary transformation of
the form z D ux ƒ v, which might improve conditioning for
the design used.

4. In our example, the paths of intermediate stationary
values were of no practical interest; in other examples,
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Table 3. Ridge Paths for the Anik and Sukumar (1981) Data, Under the Restrictions
x3 D .08 and x1 + x2 + x4 D .82.

Path ‹ x1 x2 x3 x4 R Oy

A (max) ˆ 0203 0203 008 0414 0 8012
1000 0207 0203 008 0410 0005 8016
500 0211 0202 008 0407 0010 8021
200 0225 0200 008 0395 0029 8041
150 0236 0197 008 0387 0042 8057
125 0246 0194 008 0380 0055 8074
100 0265 0189 008 0366 0079 9010
90 0279 0184 008 0357 0097 9039
80 0301 0177 008 0342 0124 9090
75 0317 0171 008 0332 0144 10032
70 0341 0162 008 0317 0173 10097
66 0367 0152 008 0301 0205 11080
65095 0368 0152 008 0300 0206 11082
60 0433 0127 008 0260 0287 14031
55 0549 0081 008 0190 0429 20013
52 0698 0021 008 0101 0613 30032

B and C do not occur within the region x3 D 008, x1 C x2 C x4 D 082

D (min) ƒ6 0158 0028 008 0634 0286 6086
ƒ7 0156 0058 008 0606 0245 7000
ƒ9 0154 0098 008 0568 0194 7018
ƒ9015 0154 0100 008 0566 0191 7019

ƒ10 0154 0111 008 0555 0176 7023
ƒ20 0156 0168 008 0496 0101 7051
ƒ30 0161 0184 008 0475 0077 7062
ƒ40 0166 0192 008 0462 0063 7069
ƒ50 0169 0196 008 0455 0054 7073
ƒ70 0175 0200 008 0445 0043 7080

ƒ100 0181 0202 008 0437 0033 7086
ƒ500 0197 0204 008 0419 0008 8005

ƒ1000 0200 0204 008 0416 0004 8008
ƒˆ 0203 0203 008 0414 0 8012

Figure 3. The Fitted Contours De’ ned by (3) When x3 D .08 Shown in the Subspace x1 + x2 + x4 D .82. The ridge paths of maximum Oy and
minimum Oy on spheres of radius R emanate from the focus f D ( .203, .203, .08, .413) 0; numerical details are given in Table 3. The pentagon is the
inner one of Figure 1(b).
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Table 4. Ridge Paths for the Anik and Sukumar (1981) Data, Under
the Restrictions x3 D .08, x4 D .30, and x1 + x2 D .52

Path ‹ x1 R Oy

A (max) ˆ 0260 0 9045
1000 0264 0006 9051
500 0268 0012 9058
250 0278 0025 9075
100 0316 0079 10051

90 0325 0092 10072
80 0338 0110 11003
75 0346 0122 11025
70 0357 0137 11053
65 0371 0157 11091
60 0389 0182 12045
5705 0400 0198 12081

B (min) 1015 0120 0198 8039
0 0125 0190 8038

ƒ10 0160 0142 8045
ƒ20 0180 0113 8056
ƒ40 0203 0081 8074

ƒ100 0229 0043 9002
ƒ200 0243 0024 9019
ƒ750 0255 0007 9037

ƒˆ 0260 0 9045

they may well be. As a reviewer pointed out, “a sec-
ondary maximum : : : that would give us near-optimal
properties : : : may be in a very distant location in design
space : : : [and] could have other advantages in terms of
cost, ease of operation, safety, etc. [and might improve]
additional responses.” We fully agree, but add that, because
of the mixture restrictions, such locations often fall outside
permissible operating conditions. Certainly, these other paths
need to be examined in all cases.

5. A reviewer questioned whether the stage-by-stage fol-
lowing of the optimum Oy path to and along boundaries of the
restricted region necessarily leads to the overall optimum. As a
speci� c check of the example of Table 4, which gives the max-
imum Oy D 12081 value at the true vertex 40401 0121 0081 0305, we
calculated the predicted response values at all 10 true vertices
of the restricted region. Among these 10 Oy values, the second
largest is 12.63 and occurs at the vertex 40401 0101 0081 0325,
the vertex closest to the maximum. More generally, it would
be possible to use the methods of this article on any selected
subregion, including the faces of the bounding polyhedron. In
cases where boundaries cut off the path of the maximum ridge
quickly, and where secondary paths begin within the restricted
region, it would be possible for the true restricted maximum
to lie on another path. In our example, there are no secondary
paths within the restricted region, so this cannot occur.

6. The contours of Figure 3 are drawn here only to show
the paths, and thereby display what the method achieves. One
does not actually need the contours, as examination of the
coordinates in Tables 2, 3, and 4 makes clear. This would
be especially important in a high-dimensional mixture space,
where contours could be drawn only in sections.

ACKNOWLEDGMENTS

The authors are grateful to Alexander von Humboldt-
Stiftung for support through a Max Planck Award for
cooperative research. They thank the editor, an associate edi-
tor, and two referees, all of whom made excellent comments
that greatly improved the original version of this article.

[Received October 2001. Revised December 2001.]

REFERENCES

Anik, S. T., and Sukumar, L. (1981), “Extreme Vertexes Design in Formula-
tion Development : Solubility of Butoconazole Nitrate in a Multicomponent
System,” Journal of Pharmaceutical Sciences, 70, 897–900.

Cornell, J. A. (1990), Experiments with Mixtures (2nd ed.), New York: Wiley.
Del Castillo, E., Fan, S. K., and Semple, J. (1997), “The Computation of

Global Optima in Dual Response Systems,” Journal of Quality Technology,
29, 347–353.

(1999), “Optimization of Dual Response Systems: A Comprehensive
Procedure for Degenerate and Nondegenerat e Problems,” European Journal
of Operations Research, 112, 174–186.

Draper, N. R. (1963), “Ridge Analysis of Response Surfaces,” Technometrics,
5, 469–479.

Draper, N. R., and Pukelsheim, F. (2000), “Ridge Analysis of Mixture
Response Surfaces,” Statistics & Probability Letters, 48, 131–140.

Draper, N. R., and Smith, H. (1998), Applied Regression Analysis (3rd ed.),
New York: Wiley.

Hoerl, A. E. (1959), “Optimum Solution of Many Variables Equations,”
Chemical Engineering Progress, 55(11), 69–78.

(1962), “Applications of Ridge Analysis to Regression Problems,”
Chemical Engineering Progress, 58(3), 54–59.

(1964), “Ridge Analysis,” Chemical Engineering Progress Sympo-
sium Series, 60, 67–77.

Hoerl, R. W. (1985), “Ridge Analysis 25 Years Later,” The American Statis-
tician, 39, 186–192.

(1987), “The Application of Ridge Techniques to Mixture Data:
Ridge Analysis,” Technometrics, 29, 161–172.

McLean, R. A., and Anderson, V. L. (1966), “Extreme Vertices Design of
Mixture Experiments,” (with discussion), Technometrics, 8, 447–456.

Myers, R. H., and Carter, W. H. Jr. (1973), “Response Surface Techniques for
Dual Response Systems,” Technometrics, 15, 301–317.

Prescott, P., Dean, A. M., Draper, N. R., and Lewis, S. M. (2002), “Mix-
ture Experiments: Ill-Conditioning and Quadratic Model Formulation,”
Technometrics, 44, 260—268.

Scheffé, H. (1958), “Experiments with Mixtures,” Journal of the Royal Sta-
tistical Society, Ser. B, 20, 344–360.

(1963), “The Simplex-Centroid Design for Experiments With Mix-
tures,” Journal of the Royal Statistical Society, Ser. B, 25, 235–263.

Semple, J. (1997), “Optimality Conditions and Solutions Procedures for
Nondegenerat e Dual Response Systems,” Institute of Industrial Engineers
Transactions, 29, 743–752.

TECHNOMETRICS, AUGUST 2002, VOL. 44, NO. 3

http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3549^28^2970L.897[aid=2852308]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0377-2217^28^29112L.174[aid=595311]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-7152^28^2948L.131[aid=2852309]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0003-1305^28^2939L.186[aid=2852310]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2929L.161[aid=2852311]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2944L.260[aid=2852313]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0740-817X^28^2929L.743[aid=2852314]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0377-2217^28^29112L.174[aid=595311]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0003-1305^28^2939L.186[aid=2852310]
http://antonio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0740-817X^28^2929L.743[aid=2852314]

