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Ridge analysis of mixture response surfaces
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Abstract

Previous applications of ridge analysis to second-order response surfaces based on mixture ingredients (x1; x2; : : : ; xq)
which sum to 1 have required transforming from the origin (0; 0; : : : ; 0), which is not in the mixture space, to a point
inside the space, most often the centroid (1=q; 1=q; : : : ; 1=q). We show that this transformation is not necessary for tracking
the maximum ŷ and the minimum ŷ paths. In addition, we show that the application of ridge analysis is somewhat
simpli�ed if the Sche��e model form is replaced by the K (Kronecker) model form, an alternative, homogeneous model
given elsewhere. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Ridge analysis was initially suggested by Hoerl (1959, 1962) in the context of �tted second-order response
surface models where the factors were not restricted. Some theoretical foundation for the method was later
given by Draper (1963). See also Hoerl (1964) and Hoerl (1985). The basic method de�nes a series of
paths outward from the origin (x1; x2; : : : ; xq)=(0; 0; : : : ; 0) of the factor space. Suppose the �tted second-order
surface is written as

ŷ = b0 + x′b+ x′Bx; (1)

where

x′ = (x1; x2; : : : ; xq); b′ = (b1; b2; : : : ; bq)
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and

B =




b11 1
2b12 : : : 1

2b1q
1
2b12 b22 : : : 1

2b2q

...
...

. . .
...

1
2b1q

1
2b2q : : : bqq



: (2)

Then (1) is the matrix format for the second-order �tted equation

ŷ= b0 + b1x1 + b2x2 + · · ·+ bqxq + b11x21 + b22x22 + · · ·+ bqqx2q
+ b12x1x2 + b13x1x3 + · · ·+ bq−1; qxq−1xq: (3)

The outward paths mentioned above are de�ned by imagining a sphere about the origin x = (0; 0; : : : ; 0)′

of radius R, say. On such a sphere, we can �nd the point of maximum response and the point of minimum
response. In general, there may also be points at which ŷ has stationary values that are neither maxima
nor minima. As R is increased from zero outwards, the loci of the maximum ŷ and the minimum ŷ can
be followed out, thus giving us (second-order) paths of steepest ascent and descent. Typically, the paths of
the intermediate stationary values, if any exist, begin at non-zero values of R which depend on the speci�c
response surface being analyzed.

2. Mixtures ridge analysis

Mixtures ridge analysis has been featured in only a few papers to date. Related references are Becker
(1969), Cornell and Ott (1975), and Hoerl (1987). In the last-mentioned paper, ridge analysis is done by
�rst transforming the q mixture variables to (q − 1) orthogonal variables, essentially removing the mixture
restriction, but also unbalancing the coordinate system. This makes ridge analysis somewhat awkward to apply,
and also makes it necessary to transform any conclusions back into the mixture coordinates.
We now show how ridge analysis can be applied directly to mixtures applications in which x′1= x1 + x2 +

· · ·+xq=1: For the moment, however, we shall continue to use the general form (1) and (2) for the response
surface, particularizing to speci�c mixture forms when needed. Consider the Lagrangian function

F = b0 + x′b+ x′Bx− �1(x′1− 1)− �2(x′x − R2): (4)

When �1 = 0, we fall back to the “usual” second-order ridge analysis Lagrangian function, as in Hoerl (1959,
1962) and Draper (1963). Di�erentiating (4) with respect to x (which can be achieved by di�erentiating (4)
with respect to x1; x2; : : : ; xq in turn and rewriting these equations in matrix form) gives

@F
@x
= b+ 2Bx− �11− 2�2x: (5)

Setting (5) equal to zero leads to

2(B − �2I)x=−(b− �11): (6)

Super�cially, it would seem that if (B − �2I)−1 exists, which will happen as long as �2 is not an eigenvalue
of B, we obtain solutions for all the stationary points of ŷ on the sphere of radius R from the q equations

x=− 1
2 (B − �2I)−1(b− �11): (7)
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In fact, however, solutions exist via (6) or (7) for the mixtures problem even at those eigenvalues, in general.
This is because we must add, to the q equations of (7), the two restrictions

1′x ≡ x′1 ≡ x1 + x2 + · · ·+ xq = 1 (8)

which ensures that the solution lies in the mixture subspace, and

x′x ≡ x21 + x22 + · · ·+ x2q = R2; (9)

which means that the solution is also on a sphere of radius R.
Moreover, for mixtures models, b0;B and b can take only certain forms, as will be explained in Section 4.

As in ordinary ridge regression, we could in theory �x R, substitute from (8) and (9) into (7) and then solve
(7); it is far simpler to �rst select a value for �2 in (7), however, whereupon we can apply (8) to obtain

1 = 1′x=− 1
21

′(B − �2I)−1(b− �11) (10)

which implies that

1 + 1
21

′(B − �2I)−1b= 1
2�11

′(B − �2I)−11 (11)

so that

�1 =
1 + 1

21
′(B − �2I)−1b

1
21

′(B − �2I)−11
: (12)

We can now in general invoke (7) to give a value for x for the particular combination of �2 (chosen) and
�1 (from (12)) and evaluate R2 = x′x from (9) and ŷ from (1) or (3). We thus have a point on one of the
stationary paths de�ned by (�2; �1; x; R; ŷ). Furthermore, all such points satisfy (8).
Note that from (5) and (6), it is apparent that when we set �2 = 0, whereupon from (12),

�1 =
1 + 1

21
′B−1b

1
21

′B−11
; (13)

Eq. (7) will deliver the stationary point on the mixture space.
How do we know which path we are on – overall maximum ŷ on (9), overall minimum ŷ on (9), or

intermediate stationary values, such as local maxima or minima? The usual matrix of second derivatives

{
@2F
@xi@xj

}
= 2(B − �2I) (14)

is not appropriate here, because it does not reect the fact that the solution has to be on the mixture space.
Consider the (q− 1) by q matrix

Tq =




t11 t12 : : : t1q

t21 t22 : : : t2q

...
...

. . .
...

tq−1;1 tq−1;2 : : : tq−1; q




(15)
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say, where each row consists of a vector of orthogonal polynomial coe�cients, normalized so that the row
sum of squares is 1. For q= 3 and 4, needed for our examples later, we have

T3 =




− 1√
2

0
1√
2

1√
6

− 2√
6

1√
6


 ; (16)

T4 =




− 3√
20

− 1√
20

1√
20

3√
20

1
2

−1
2

−1
2

1
2

− 1√
20

3√
20

− 3√
20

1√
20



: (17)

[See, for example, Draper and Smith (1998, p. 466).]
The addition of a last row u′q=(1=

√
q; 1=

√
q; : : : ; 1=

√
q)=(1=

√
q)1′ converts Tq into a transformation matrix

Uq = (T ′
q; uq)

′ which allows the x1; x2; : : : ; xq coordinates to be converted into values z1; z2; : : : ; zq−1; 1=
√
q; via

z=Uqx or x=U−1
q z=U ′

q(z1; z2; : : : ; zq−1; 1=
√
q)′, due to the orthogonality of Uq. It follows that, if we de�ne

w= (z1; z2; : : : ; zq−1)′, so that z = (w′; 1=
√
q)′,

x′Bx= z′UqBU ′
qz = w

′TqBT ′
qw+

2√
q
u′qBT

′
qw+

1
q
u′qBuq: (18)

This means that we can replace (14), after di�erentiating (18) twice with respect to w, by

2(TqBT
′
q − �2I): (19)

Note that the size of this square matrix is (q − 1) not q because Tq is (q − 1) × q. We see that, if (19)
is positive de�nite, we have a minimum, while if (19) is negative de�nite, we have a maximum. If (19) is
inde�nite, intermediate stationary values are indicated. In fact, the theory at this point is a complete parallel
of that in Draper (1963). If the eigenvalues of TqBT

′
q are �16�26 · · ·6�q−1, arranged in order with due

regard to sign then on the mixture space:
(a) choosing �2¿�q−1 provides a locus of maximum ŷ as R changes, and
(b) choosing �2¡�1 provides a locus of minimum ŷ as R changes.
(c) choosing �16�26�q−1 gives intermediate stationary values.
As in the non-mixture case, when �2 = �i exactly for i = 1; 2; : : : ; q− 1; R is in�nite. [See Draper, 1963.]
Note that we do not need these eigenvalues to obtain the paths, but only to distinguish between paths.

For the loci of maximum ŷ and the minimum ŷ, the eigenvalues are not necessary since choosing �2 values
decreasing from ∞ gives the path of maximum ŷ, while using values increasing from −∞ gives the path of
minimum ŷ.

3. The geometry

To see why the solution works without moving to an origin on the 1′x = 1 plane, we show geometrically
the simplest cases; see Fig. 1. Imagine a sphere x21 + x

2
2 + x

2
3 =R

2 centered at the origin O in Fig. 1(b). When
R¡ 1=

√
q, the sphere will not intersect the mixture space x1 + x2 + x3 = 1 so there will be no solutions to

(7). When R=1=
√
q, the sphere just touches the mixtures centroid (1=

√
q; 1=

√
q; : : : ; 1=

√
q)= (1=

√
q)1, which

will thus be the only solution point x of Eqs. (7)–(9). It can easily be con�rmed that, for this solution,
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Fig. 1. Ridge analysis geometry in the mixtures case for (a) q = 2, (b) q = 3.

�2 =∞; �1 =−∞; x= (1=√q)1 and R=1=√q. [Or �2 =−∞; �1 =∞, etc.] When R¿ 1=
√
q, the sphere will

intersect the plane x1 + x2 + x3 = 1 in a circle centered at the mixture centroid, which is exactly the way
we wish to apply ridge analysis in this q = 3 mixture space. [Fig. 1(a) shows the more elementary q = 2
case where the “spheres” are now circles and the “circles” are now pairs of points equally spaced on the line
x1 +x2 =1 around the centroid ( 12 ;

1
2 ).] For q¿4, the picture of Fig. 1(b) must be mentally extended to higher

dimensions. For q= 4, for example, the “spheres” cannot be drawn and the “circles” are spheres around the
centroid of a pyramid.

4. Choice of mixture model

In actually carrying out calculations (7) for selected �2, and with �1 derived from (12) we have to specify
the particular form of second order mixture model to �t. Most readers would probably choose the Sche��e
model (S-model) which, for second order, consists only of terms in xi and in xixj. In such a case B in (2)
has all diagonal terms zero, while b is, in general non-zero. Certainly the calculations o�er no di�culty if
carried out in this form.
A more interesting possibility, we suggest, is to employ the K-model where K stands for Kronecker. This

involves using no xi terms, replacing them by x2i terms to obtain

ŷ = b11x21 + b22x
2
2 + · · ·+ bqqx2q + b12x1x2 + b13x1x3 + · · ·+ bq−1; qxq−1xq: (20)

This form has been suggested by Draper and Pukelsheim (1998); a comparison between the second order
S- and K-models has been provided therein. The advantage in the ridge analysis formulation is that while B
now contains diagonal terms, b= 0. Thus (12) becomes

�1 = 2{1′(B − �2I)−11}−1 (21)
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whereupon (7) reduces to

x= {1′(B − �2I)−11}−1(B − �2I)−11: (22)

Our examples will be analyzed using the K-approach; either approach gives the same numerical solutions,
of course. The proof of this follows from the fact that BS + 1

2b1
′+ 1

21b
′=BK, where subscript S denotes the

Sche��e form of B and subscript K denotes the Kronecker form of b. We can now premultiply both sides by
x′, postmultiply both sides of the result by x, set 1′x=x′1=1 and we obtain x′BSx+ 1

2(x
′b+ b′x)=x′BKx,

the bracketed terms being identical and reducing to b1x1 + · · ·+ bqxq:
All solutions x will be on the subspace 1′x = 1, but depending on the �2 value chosen, some points will

have coordinates that exceed 1 or that are negative. Since the mixture space is such that 06xi61, solutions
that violate these restrictions are not relevant. We shall discuss this in our examples.

5. Examples

Example 1 (Kurotori, 1966; see also Draper and Smith, 1998; pp. 418– 419). A set of 10 experimental runs
was performed on a propellant problem with three ingredients (q=3). In the original experiment, a restricted
region with x1¿0:2; x2¿0:4; and x3¿0:2 was explored, and the best predictions were found to be on the
x1 = 0:20 boundary. In the present paper we do not restrict the surface to the smaller region, but follow the
maximum ŷ path from the centroid (which is outside the region explored) into the restricted region. Note, in
this regard, that the ridge paths may exist mathematically even when they might not be practically relevant.

Fitting the surface in K-model form, we obtain the following equation:

ŷ =−2:732 x21 − 3:340 x22 − 17:259 x23 + 3:249 x1x2 + 14:694 x1x3 + 28:813 x2x3;

Table 1
Ridge path (x1; x2; x3) of maximum ŷ as �2 decreases and R increases, Kurotori data

�2 x1 x2 x3 R ŷ

∞ 0.333 0.333a 0.333 0.577 2.603
50 0.321 0.359a 0.320 0.578 2.714
20 0.302 0.384a 0.314 0.581 2.800
10 0.276 0.412 0.312 0.586 2.883

9 0.271 0.417 0.312 0.587 2.900
7 0.258 0.429 0.313 0.590 2.928
5 0.239 0.447 0.314 0.596 2.969
3 0.208 0.474 0.318 0.608 3.021

1 0.152a 0.522 0.326 0.634 3.082
0 0.101a 0.564 0.335 0.664 3.099

−1 0.015a 0.635 0.350 0.725 3.050
−2 −0:165b 0.781 0.383 0.886 2.635

Restrictions in the original data set: x1¿0:2; x2¿0:4; x3¿0:2
aPoint lies outside the original restricted data space.
bPoint lies outside the main simplex.
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Fig. 2. How R varies with �2. Kurotori data.

whereupon

B =




−2:732 1:624 7:347

1:624 −3:340 14:406

7:347 14:406 −17:259




with eigenvalues (−27:50;−4:24; 8:40). However, these eigenvalues are not the ones that a�ect movement on
the mixture surface. With T3 de�ned as in (16) we �nd the eigenvalues of T3BT

′
3 to be (−27:28;−3:86).

The path for the maximum ŷ will thus be mapped out for values of �¿− 3:86. [Because this problem is not
well conditioned, slightly di�erent numbers may be obtained by di�erent programs.]
Table 1 shows some selected calculations for this path, moving out from the centroid ( 13 ;

1
3 ;
1
3 ). We see that

the path enters the restricted subspace across the x2=0:40 boundary, and exits it across the x1=0:20 boundary
later. The maximum predicted ŷ in or on the restricted subspace is at about (0.20, 0.48, 0.32), close to the
�2 = 3 entry of Table 1.
In examining the path, we can ignore points which violate the conditions of the practical problem. Note

that a path could in theory pass outside the mixture space (or a de�ned restricted sub-region of it) and then
come back in. The practical interpretation of such behavior would be to follow the path to the border and
then move along the border until the path returned to the valid part of the mixture region.
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Fig. 3. How �1 varies with �2. Kurotori data.

Figs. 2 and 3 are helpful in understanding the calculations made for Table 1. Fig. 2 shows how the radius
R varies with �2, leaping to in�nity at the eigenvalues −27:28 and −3:86 of T3BT ′

3. Table 1 corresponds to
the �2¿−3:86 part of Fig. 2 only, of course; this part is smooth where not shown. Since the sphere of radius
R passes outside the mixture space when R¿ 1, only the lower portion of Fig. 2 is meaningful in practice.
The radius R¿1=

√
q always [here 0.577]. When �2 = −∞ or ∞, we are at the centroid exactly. The two

separate curves forming the U-shaped curve between the eigenvalues may (or may not) go as low as 1=
√
q

[here they do not]. Compare with a similar diagram in Draper (1963).
Fig. 3 shows how �1 varies as a function of �2; as �2 increases, �1 basically decreases but there are three

sections in the plot (q − 1 in general) with divisions at the eigenvalues of T3BT ′
3. At each eigenvalue, the

curve passes instantaneously from −∞ to ∞. [We note again that the eigenvalues of B itself are not relevant
to these calculations.]

Example 2 (Draper et al., 1993; Draper and Smith, 1998; pp. 419– 422). The data consist of 36 observations
in four blocks. A second-order model with three added blocking variables was used.

Fitting the surface in K-model form, we get

ŷ=−14:89B1 − 21:78B2 − 20:11B3 + 400:40x21 + 449:32x22 + 398:90x23 + 403:49x24
+ 946:17x1x2 + 988:86x1x3 + 954:56x1x4 + 811:33x2x3 + 823:69x2x4 + 746:39x3x4:

The �rst three terms do not depend on the x’s and do not contribute to the ridge analysis except for the �tted
value calculations. For the purposes of this example, we simply choose to omit them, i.e., set B1=B2=B3=0,
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Fig. 4. How R varies with �2. Bread data.

because the ridge calculations are not thus a�ected [beyond ŷ levels]. Now

B =




400:403 473:083 494:431 477:278

473:083 449:319 405:667 411:847

494:431 405:667 398:903 373:194

477:278 411:847 373:194 403:486




with eigenvalues (−128:9; 16:62; 30:81; 1733:6). These eigenvalues are not needed. The eigenvalues of T4BT ′
4

where T4 is given by (17), are (−126:3; 16:78; 30:81). Fig. 4, parallel to Fig. 2 but for Example 2, shows
that R goes to ∞ at these eigenvalues. For the path of maximum predicted response, we need �2 values for
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Table 2
Ridge path of maximum ŷ as R increases. Bread data

�2 x1 x2 x3 x4 R ŷ

∞ 0.250 0.250 0.250 0.250 0.500 433
600 0.289 0.255 0.230 0.226 0.503 436
200 0.335 0.272 0.205 0.187 0.514 440
100 0.369 0.308 0.187 0.136 0.533 442
50 0.389 0.414 0.182 0.016 0.596 447
48 0.389 0.425 0.184 0.003 0.605 448
46 0.389 0.437 0.186 −0.013a 0.614 448

aPoint lies outside the mixture region.

which 30:816�26∞. Table 2 shows some selected calculations for this path, moving out from the centroid
( 14 ;

1
4 ;
1
4 ;
1
4 ), until the path goes outside the mixture space [on the last line].

For both Examples 1 and 2, diagrams of the response contours appear in Draper and Smith (1998,
pp. 419 and 421). In the case of the second of these diagrams, the e�ects of three non-signi�cant terms
have been omitted in the equation used, but this does not have a material e�ect on the contours drawn. [The
ridge analysis could be redone in terms of the reduced model with very similar results.] In both Examples 1
and 2, the ridge paths obtained are consistent with the diagrams.
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