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Abstract

The choice of multipliers is studied, for multiplier methods of rounding that are based on
rounding functions. Four multipliers are introduced and shown to be asymptotically equivalent, an
easy-to-calculate multiplier, the exactly unbiased multiplier, the maximum probability multiplier,
and the minimum complexity multiplier. The results are useful in assessing the rounding error
when rounding probabilities to fractional proportions. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

When rounding a �nite set of probabilities to integral multiples of 1=n, for a given
denominator or accuracy n, standard rounding may well leave a nonvanishing discrep-
ancy. That is, the rounded weights often fail to sum to one. For examples and details
of the problem, see Mosteller et al. (1967), Diaconis and Freedman (1979), Balinski
and Young (1982), Happacher (1996), or Happacher and Pukelsheim (1996, 1998).
Table 1 shows the result of the 1996 Russian presidential vote region-by-region.

The 11 categories comprise the valid votes for each of the 10 candidates, and the vote
against all candidates on the ballot. Using standard rounding, the counts are rounded
to the tenth of a percent. In our notation, this is of the form ni=n, with n= 1000. The
last column gives the discrepancy, D = (

∑
i611 ni)− 1000.
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In this paper we discuss the problem of bringing the discrepancy close to zero,
by making a good choice for a variable called multiplier to be introduced below. As
in our previous work (Happacher, 1996; Happacher and Pukelsheim, 1996, 1998) we
concentrate on a rounding function rq, for some q ∈ [0; 1]: For any integer k¿0,
a number x in the interval [k; k + 1] is rounded to rq(x) = k if x¡k + q, and to
rq(x)= k +1 if x¿k + q. A tie occurs when x= k + q, but these form a nullset under
the distributional assumptions that we adopt in the following.
For a �xed number of categories, c, we assume the probability vector (W1; : : : ; Wc)

to be uniformly distributed on the probability simplex of Rc. This distributional as-
sumption is fundamental to the sequel, and appears to be a natural starting point. The
total

Tc;q;� =
∑
i6c
rq(�Wi) (1)

then is an integer-valued random variable, and crucially depends on the (continuous)
multiplier �¿ 0. For given accuracy n, we seek to determine a multiplier �n so that
the discrepancy

Dc;q;n = Tc;q;�n − n (2)

concentrates around zero, in some sense or other.
Table 1 presents an example for c=11 categories, using standard rounding q=1=2,

accuracy n=1000, and multiplier �n= n. The 89 constitutional subjects of the Russian
Federation, together with the votes cast abroad and the candidates’ totals, yield the 91
realizations of the discrepancy D = D11;1=2;1000 given in the last column of the table.
The observed frequencies of the values of D are listed in Table 2.
For an individual set of weights (w1; : : : ; wc) one can always �nd a multiplier �

satisfying
∑

i6c rq(�wi) = n. This is what Balinski and Young (1982) call a rounding
method. The method that comes with standard rounding, q= 1

2 , is called the Webster
method. Table 1 indicates the corrective action, following standard rounding, that is
needed to obtain a solution according to the Webster method. A trailing sign + or −
means to add or to subtract 0.1%, in order to make the discrepancy vanish.
Section 2 reviews our earlier results on the easy-to-calculate multipliers

�c;q;n = n+ c(q− 1
2 ): (3)

Table 2
Discrepancy distribution for 11 categories

Discrepancy D11;1=2;1000 −4 −3 −2 −1 0 1 2 3 4

Observed frequency 0 0 9 18 37 20 6 1 0
Theoretical frequency 0 0 4 23 38 22 4 0 0

Probability 0.00002 0.00249 0.04845 0.24532 0.41096 0.24281 0.04751 0.00242 0.00002

Note: The observed frequencies are from Table 1. The probabilities are calculated from the formula in
Happacher (1996, p. 66). They are rounded (Webster method, n= 91) to obtain the theoretical frequencies.
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Table 3
Numerical examples of various multipliers

q 0 1
4

1
2

3
4 1

�11;q;100 94.5 97.25 100 102.75 105.5
�11;q;100 94.40291 97.26260 100.04580 102.76042 105.41305
�11;q;100 94.39741 97.26310 100.05039 102.76046 105.40812
�11;q;100 94.40068 97.26286 100.04764 102.76039 105.41106

Note: The numerical di�erences between the unbiased multipliers (3)–(4) and the optimal multipliers (5)–
(6) are small, which is true beyond the special cases for c = 11 and n = 100 that are shown in the table.

They achieve unbiasedness in an asymptotic sense, E[Tc;q;�c;q; n ] = n+O(1=n). Standard
rounding has �c;1=2; n = n. If the accuracy n is �xed then there is an exactly unbiased
multiplier

�c;q;n; (4)

ful�lling E[Tc;q;�c;q; n ] = n. This existence statement is of little merit for practical appli-
cations, as no closed form expression for �c;q;n is available.
In Sections 3 and 4 we introduce two new optimality concepts. In Section 3 we

prove that, for a given accuracy n, there is a multiplier

�c;q;n (5)

maximizing the probability of a vanishing discrepancy. This maximum probability
multiplier �c;q;n is again hard to calculate. The same is true of the minimum complexity
multiplier

�c;q;n (6)

in Section 4, minimizing the expectation of the absolute value of the discrepancy.
Table 3 illustrates the small numerical di�erences between the four multipliers
(3)–(6). Fig. 1 suggests that the di�erences between (4)–(6) and (3) are bounded
of the order 1=n.
Section 5 is devoted to the asymptotic discrepancy distribution, as the accuracy n

tends to in�nity. Theorem 6 shows that, under mild assumptions on the multiplier
sequence (�n)n¿1, the discrepancies Dc;q;n from (2) have a limiting distribution that
does not depend on q and that is given by the density of the convolution of c uniform
distributions on the interval (− 1

2 ;
1
2 ). The convolution of uniform distributions is a

frequently used model for the sum of rounding errors. See, for example, Mosteller et
al. (1967), Diaconis and Freedman (1979), or Johnson et al. (1995, Chapter 26.9).
Table 4 lists the asymptotic probabilities for c = 3; 5; 7; 9; 11 categories.
Section 6 comes to the conclusion that, asymptotically as n → ∞, the multiplier

sequence from (3) is of maximum probability and minimum complexity, besides being
unbiased. In summary, we recommend the multipliers �c;q;n from (3).
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Fig. 1. Scaled Remainder Sequences. For increasing accuracy n= 11; : : : ; 300, the remainder sequences (17)
that are scaled by n appear to be bounded. The graphs are for the special case of c = 11 categories and
standard rounding, q = 1

2 .

Table 4
Distribution of the asymptotic discrepancy Dc

c 0 ±1 ±2 ±3 ±4
3 0.75 0.125
5 0.59896 0.19792 0.00260
7 0.51102 0.22880 0.01567 0.00002
9 0.45292 0.24078 0.03213 0.00063 0.0
11 0.41096 0.24407 0.04798 0.00245 0.00002

Note: The probabilities are calculated from (21). For c = 11 categories, symmetrization of the exact proba-
bilities in Table 2 yields almost precisely the present numbers; the support points ±5 each have. Each ±5
has probability 0:27× 10−9.

2. Unbiased multipliers

Unbiasedness relates to the moments of the total (1). For n¿c, the existence of a
unique exactly unbiased multiplier (4) is established by Happacher (1996, p. 29), or
Happacher and Pukelsheim (1996).
For the asymptotic statements we rely on Happacher (1996, pp. 33, 36), or Happacher

and Pukelsheim (1996). As � tends to in�nity, the �rst two moments of the total satisfy

E[Tc;q;�] = �− c
(
q− 1

2

)
+
(
c
2

)
1=6 + q(q− 1)

�
+O

(
1
�2

)
; (7)

Var[Tc;q;�] =
c
12
+
2
3

(
c
2

)
q(q− 1=2)(q− 1)

�
+O

(
1
�2

)
: (8)
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Hence the multiplier �= �c;q;n from (3) leads to the expectation n+ O(1=n) in (7).
This is the asymptotic unbiasedness property.
The moments in (7) and (8) depend on the one-dimensional and two-dimensional

marginal distributions of the random vector (W1; : : : ; Wc). In general, the marginal
distributions have a simple structure.

Lemma 1 (Marginals). Fix ‘ ∈ {1; : : : ; c}. The ‘-dimensional marginal distributions
of (W1; : : : ; Wc) are all identical;

P(Wi1¿y1; : : : ; Wi‘ ¿y‘) =

(
1− ∑

i6‘
yi

)c−1
;

with y1; : : : ; y‘ ∈ (0; 1) such that
∑

i6‘ yi ¡ 1.

Proof. Exchangeability leads to identical marginal distributions. The formula itself is
not hard to derive by a geometric argument, see Happacher (1996, p. 26).

3. Maximum probability multipliers

For a given accuracy n, a maximum probability multiplier �c;q;n must ful�ll

P(Tc;q;�c;q; n = n) = max�¿0
P(Tc;q;� = n): (9)

The following theorem shows that such a multiplier exists.

Theorem 2 (Maximum probability). For every accuracy n¿c; there exists a max-
imum probability multiplier �c;q;n. All maximum probability multipliers lie in the
interval (n− c(1− q); n+ cq).

Proof. The function gn(�) =P(Tc;q;�= n) is continuous on (0;∞). Indeed, the positive
quadrant (0;∞)c is tiled by cubes of the form (k1−1+q; k1+q)×· · ·×(kc−1+q; kc+q),
consisting of the vectors (x1; : : : ; xc) that are rounded to (k1; : : : ; kc). Let C(n) be the
union of the cubes with

∑
i6c ki = n. We have

Tc;q;� = n ⇔ �(W1; : : : ; Wc) ∈ C(n):
Let S(c) be the probability simplex in Rc. The representation

gn(�) =
volc−1(C(n) ∩ �S(c))

volc−1(�S(c))
(10)

shows that the function gn is continuous on (0;∞).
A rounding function rq comes with the basic relation rq(�Wi)−1+q6�Wi6rq(�Wi)+

q, for all i6c. Summation yields

Tc;q;� − c(1− q)6�6Tc;q;� + cq: (11)
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On the set {Tc;q;� = n}, the multiplier � then lies in the interval K = [n− c(1− q); n+
cq]⊂(0;∞). For � outside K we have P(Tc;q;� = n) = 0. This extends to the endpoints
�=n−c(1−q) and �=n+cq, by continuity. Thus �c;q;n exists, and any such multiplier
must lie in the interior of K .

The function gn in the proof fails to be everywhere di�erentiable. Cubes that stick
out through one of the bounding faces of the positive quadrant are cut o�. On the
boundary it is therefore not cubes, but rectangular subsets that are relevant. At such
values of � where the scaled simplex �S(c) just touches some cube or some boundary
rectangle, the function gn is not di�erentiable.
The �rst part of the proof makes no use of the special rounding functions rq of the

present paper. Hence the existence result carries over to general rounding functions
r that are determined by a signpost sequence s(k), as discussed in Happacher and
Pukelsheim (1996).

4. Minimum complexity multipliers

The rounding algorithm in Doreitner and Klein (1999) relies on an initial multiplier
� to calculate the total t = Tc;q;�. The �rst step, called the multiplier start, may leave a
nonzero discrepancy d= t− n. The second step, the discrepancy �nish, needs |d| itera-
tions to work the discrepancy up or down to zero. The expected absolute discrepancy
E[|Dc;q;n|] thus measures the complexity of the algorithm. For this reason a multiplier
�c;q;n with

E[|Tc;q;�c;q; n − n|] = min�¿0
E[|Tc;q;� − n|] (12)

is called a minimum complexity multiplier. The following statement parallels Theorem 2.

Theorem 3 (Minimum complexity). For every accuracy n¿c; there exists a minimum
complexity multiplier �c;q;n. All minimum complexity multipliers lie in the interval
(n− c(1− q); n+ cq).

Proof. We need to minimize the function h(�) = E[|Tc;q;� − n|]. From (11) we obtain
an upper and lower bound for the support of the total:

�− cq6Tc;q;�6�+ c(1− q): (13)

For � ∈ (0; n− c(1−q)] this entails Tc;q;�6n; here h(�)=n−E[Tc;q;�] is nonincreasing.
For � ∈ [n+ cq;∞) we get Tc;q;�¿n; here h(�) = E[Tc;q;�]− n is nondecreasing. Hence
h is minimized in-between.
For �6n+ cq we have Tc;q;�6n+ c and

h(�) =
n−1∑
t=0
(n− t)P(Tc;q;� = t) +

n+c∑
t=n+1

(t − n)P(Tc;q;� = t): (14)
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The functions gt(�) = P(Tc;q;� = t) are continuous, admitting representations similar to
(10). Hence h is also continuous, and attains a minimum.

The objective function h has value c=2+O(1=n) at �=n−c(1−q) and at �=n+cq,
as follows from (7). At �= �c;q;n, the trivial estimate |Tc;q;� − n|6(Tc;q;� − n)2 and (8)
yield the upper bound

c
12
+ O

(
1
n

)
: (15)

The Jensen inequality provides the alternative bound√
c
12
+ O

(
1√
n

)
: (16)

Therefore, up to terms of higher order, the minimum complexity lies below (15) for
c612, and below (16) for c¿12.
Table 3 conveys some impression of how the multipliers (3)–(6) compare numeri-

cally, for c=11 categories, accuracy n=100, and �ve values of q. The numbers were
calculated using the exact distribution of Happacher (1996, p. 66). Fig. 1 provides
additional insight for growing accuracy n= 11; : : : ; 300, in the special case c= 11 and
q= 1

2 , by exhibiting the scaled remainder sequences

UB(n) = n(�c;q;n − �c;q;n);
MP(n) = n(�c;q;n − �c;q;n);
MC(n) = n(�c;q;n − �c;q;n):

(17)

The graphs seem to indicate that the di�erences between (4)–(6) and (3) stay bounded
of order 1=n. We were unable to con�rm this result theoretically.

5. Asymptotic discrepancy distribution

The natural domain of de�nition of a rounding function is the positive half line
(0;∞). Standard rounding, however, permits an unambiguous extension to the full real
line by setting r1=2(y) = z if y ∈ (z − 1

2 ; z +
1
2), for all integers z and for all y ∈ R.

This extension is “stationary”, in that we have r1=2(z + y) = z + r1=2(y).
Lemma 5 parallels a result of Diaconis and Freedman (1979, Lemma 2). It reduces

the rounding function rq to standard rounding of appropriately shifted roundo� errors
Vq;n; i.

Lemma 5 (Convolutionlike representation). Let �n¿0 be an arbitrary multiplier. Then
the random variables Vq;n; i = rq(�nWi) − �nWi + q − 1

2 take values in (− 1
2 ;
1
2 ); for

i = 1; : : : ; c− 1; and satisfy

Dc;q;n = r1=2

(
�n − �c;q;n +

∑
i¡c
Vq;n; i

)
: (18)
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Proof. From �nWi = rq(�nWi)− Vq;n; i + q− 1=2 and Wc = 1−
∑

i¡c Wi; we get

�nWc = �n −
∑
i¡c
rq(�nWi) +

∑
i¡c
Vq;n; i − c

(
q− 1

2

)
+ q− 1

2
:

Using rq(x) = r1=2(x − q+ 1=2) and the stationarity of r1=2 on R; this rounds to

rq(�nWc) =−∑
i¡c
rq(�nWi) + r1=2

(
�n − c

(
q− 1

2

)
+
∑
i¡c
Vq;n; i

)
:

Collecting terms and again exploiting the stationarity of r1=2 on R establishes (18).

It is tempting to conjecture that the cumulated roundo� errors
∑

i¡c Vq;n; i behave
asymptotically like

∑
i¡c Ui; where U1; : : : ; Uc−1 are independent random variables with

a uniform distribution on (− 1
2 ;
1
2 ). For the discrepancy Dc;q;n; however, one more degree

of freeedom is caused by the standard rounding operation in (18). To be precise, let
fc denote the density of the c-fold convolution of the uniform distribution on (− 1

2 ;
1
2 );

see Johnson et al. (1995, Chapter 26.9).

Theorem 6 (Asymptotic discrepancy distribution). Let q ∈ [0; 1] be arbitrary and let
(�n)n¿1 be a multiplier sequence satisfying

lim
n→∞(�n − �c;q;n) = � ∈ R: (19)

Then we have; for every integer d;

lim
n→∞ P(Dc;q;n = d) =

∫ d+1=2−�

d−1=2−�
fc−1(y) dy: (20)

Proof. It is a consequence of Lemma 3 of Diaconis and Freedman (1979) that
∑

i¡c
Vq;n; i converges in distribution to

∑
i¡c Ui. Thus representation (18) and assumption

(19) yield (20)

lim
n→∞ P(Dc;q;n = d) = P

(
r1=2

(
�+

∑
i¡c
Ui

)
= d
)

= P
(∑
i¡c
Ui ∈

(
d− 1

2
− �; d+ 1

2
− �
))

:

Happacher (1996, p. 81) provides an alternative proof based on the exact �nite distri-
bution of Dc;q;n.

Let Dc be an integer-valued random variable with distribution

P(Dc = d) =
∫ d+1=2

d−1=2
fc−1(y) dy = fc(d) (21)

on the support points d=−b(c−1)=2c; : : : ; b(c−1)=2c. According to (20) with �=0; the
discrepancies Dc;q;n converge in distribution to Dc as the accuracy n tends to in�nity.
Table 4 gives the distribution of Dc for c = 3; 5; 7; 9; 11 categories.
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6. Asymptotically optimal multiplier sequences

For asymptotic comparisons we may restrict attention to multiplier sequences (�n)n¿1
that satisfy the convergence condition (19).

Lemma 7 (Limiting unimodality). For every multiplier sequence (�n)n¿1 that satis�es
(19) and for every k¿0; we have

lim
n→∞ P(|Tc;q;�n − n|6k) =

∫ k+1=2−�

−k−1=2−�
fc−1(y) dy

6
∫ k+1=2

−k−1=2
fc−1(y) dy = lim

n→∞ P(|Tc;q;�c;q; n − n|6k): (22)

Proof. The two equalities result from Theorem 6. The densities fc−1 are symmet-
ric and unimodal about 0. Therefore, the integral is maximized when the interval of
integration is centered at 0. This is the inequality in (22).

The special case k = 0 shows that the multipliers from (3) are asymptotically of
maximum probability among sequences (19),

lim
n→∞ P(Tc;q;�n = n)6 lim

n→∞ P(Tc;q;�c;q; n = n): (23)

The multipliers in (4)–(6) are asymptotically maximum probability sequences as well.
From E[|Tc;q;�n − n|] =

∑
k¿1 P(|Tc;q;�n − n|¿k) we infer that multipliers (3) asymp-

totically also minimize the complexity,

lim
n→∞ E[|Tc;q;�n − n|]¿ lim

n→∞ E[|Tc;q;�c;q; n − n|]: (24)

Again the same is true of the multipliers in (4)–(6).
Our results comprise the type of inverse problem considered by Athanasopoulos

(1994, Theorem 1:2). She �xes c and k; chooses the multiplier �n = n; and then deter-
mines the parameter q ∈ [0; 1] that maximizes limn→∞ P(|Tc;q;n−n|6k). Our Theorem
6 states that the limiting shift is �= c(q− 1

2 ). This probability is maximized when the
shift vanishes, forcing q= 1

2 .
In summary our results strongly advocate the multiplier �c;q;n from (3). It is easy to

calculate and, asymptotically, it achieves unbiasedness, maximizes the probability of a
vanishing discrepancy, and minimizes the complexity of our generic algorithm.
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Note added in proof

In the theory of apportionment, the rounding method with q = 1 is known as the
method of d’Hondt, or Je�erson (Balinski and Young, 1982, p. 18). For this method,
Gfeller (1890, p. 130) proposes to use as multiplier “le nombre des candidats plus la
moit�e du nombre des listes”, that is, �c;1;n = n + c=2 as in (3). For the same method
Hagenbach-Bischo� (1905, p. 15), who advocates the multiplier vn = n + 1 and thus
generates a negative shift � = 1 − c=2 in (19), calculates the asymptotic discrepancy
distributions of Theorem 6 for c = 3; 4; 5.
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