Proceedings of the Conference in Honor of Shayle R. Searle, August 9-10, 1996, Biometrics Unit, Cornell
University: Ithaca, NY 1998 (Library of Congress Catalog Number: 98-88524), pp. 93-108.

And Round the World Away

Max HAPPACHER and Friedrich PUKELSHEIM*

When rounding a finite set of probabilities to integral multiples of 1/n, any multi-
plier method guarantees that the rounded probabilities again sum to one. For multi-
plier methods that are stationary, we discuss the expected discrepancy and calculate
unbiased multipliers, under the assumption of uniformly distributed probabilities.

1991 Mathematics Subject Classifications: 62P25, 65G05, 90A28

KEY WORDS: Apportionment methods; Discrepancy; Mean rounding rules; Mul-
tiplier methods; Rounding down; Rounding functions; Rounding
rules; Rounding up; Standard rounding; Stationary rounding rules.

When all the world is young, lad,
And all the trees are green;
And every goose a swan, lad,
And every lass a queen;
Then hey for boot and horse, lad,
And round the world away:
Young blood must have its course, lad,
And every dog his day.
CHARLES KINGSLEY

1. INTRODUCTION

Rounding errors are commonly experienced in many practical problems. How drasti-
cally they are felt depends on the context. For instance, standard rounding to percentages
of the 1975 world population leaves a discrepancy of —2 percent. Thus it misses out on
more than 80 million people! While this does not quite round the world away, it is enough

to do away with the present authors and the rest of Germany. See Table 1.

* Friedrich Pukelsheim is Professor and Max Happacher is Assistent, Institut fiir Mathematik, Univer-
sitdt Augsburg, D-86135 Augsburg, Germany. The authors thank Sabine Rieder and Susanne Gutmair for
providing extensive simulation evidence during an early stage of the project.
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Table 1. 1975 World Population

Continent Population Proportion Percent
Asia (without SU) 2295000000 0.57289 57
Europe (with SU) 734000000 0.18323 18
Americas 540000000 0.13480 13+
Africa 417000000 0.10409 10
Australia 20000000 0.00499 0+
Total 4006 000 000 1.00000 98

Standard rounding leaves a discrepancy of —2 percent of the world population and thus loses 80 million
people, see Kopfermann (1991, page 109). The plus signs indicate the correction for the Webster method.

Table 2 shows the 1996 US presidential vote state-by-state. Using standard rounding,
the absolute counts for the three candidates are rounded to the tenth of a percent, i.e., to
the form n;/1000. The last column gives the discrepancy, D = ni + ny + ng — 1000. It is

distributed as follows:

Discrepancy -1 0 1
Observed frequency 5 39
Theoretical frequency 7 39
The theoretical distribution is P(D = —1) = 1001/8000, P(D = 0) = 6000/8000,

P(D = 1) =999/8000. This is one of the results of the probabilistic analysis pioneered by
Mosteller, Youtz and Zahn (1967), a seminal paper with plenty of empirical evidence. Our

approach follows their lead.

More precisely, we denote by r/5(z) the standard rounding of the positive number
to the closest integer if the fractional part of x is distinct from 1/2 (and the closest integer
is unique), and to the closest even integer if the fractional part of z is equal to 1/2 (and
there is a tie). See Wallis and Roberts (1956, page 175), or Bronstein and Semendjajew
(1991, Section 2.1.1.2). Let (W4, ..., W,) be a random vector that is uniformly distributed
in the probability simplex of IR . Diaconis and Freedman (1979) show that then

lim,,_, o P (ZZSC @ = 1) =0 (%) .

There is nothing built into standard rounding to preserve a linear side condition such as

summing to one.
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Table 2. US Presidential Vote of 5 November 1996

State Clinton: % Dole: % Perot: %  Discrepancy
Alabama 664 503 : 43.2 782029 : 50.8 92010 : 6.0 0
Alaska 66 508 : 35.1 101234 : 53.5 21536 :11.4 0
Arizona 612412 :47.4 576126 : 44.5 104712 : 8.1 0
Arkansas 467888 : 54.5 323622 : 37.7 66913 : 7.8 0
California 4639935 : 53.2 3412563 : 39.1 667702 : 7.7 0
Colorado 670854 : 45.9 691291 : 47.3 99509: 6.8 0
Connecticut 712603 : 53.5 481047 : 36.1 137784 : 10.3+ -1
Delaware 140209 : 52.4 98 906 : 36.9 28 693 : 10.7 0
District of Columbia 152031 : 88.3 16637 : 9.7 3479 : 2.0 0
Florida 2533502 : 48.3 2226117 : 42.5 482237 : 9.2 0
Georgia 1045552 : 46.1 1076875 :47.5 145445 : 6.4 0
Hawaii 205012 : 59.2 113943 : 32.9 27358 : 7.9 0
Idaho 165545 : 34.2 256 406 : 52.9 62506 : 12.9 0
Illinois 2299476 : 54.5— 1577930 :37.4 344311 : 8.2 +1
Indiana 874668 : 41.9 995082 : 47.6 218739 : 10.5 0
Iowa, 615525 : 50.8+ 490 809 : 40.5 104421 : 8.6 —1
Kansas 384399 : 36.4 578 572 : 54.8+ 92093 : 8.7 -1
Kentucky 635804 : 46.2 622339 : 45.2 118768 : 8.6 0
Louisiana 928983 : 52.7 710240 : 40.3 122981 : 7.0 0
Maine 311000 : 53.5 185062 : 31.8 85268 : 14.7 0
Maryland 0924284 : 54.7 651682 : 38.6 113684 : 6.7 0
Massachusetts 1567223 : 62.4 717622 : 28.6 225394 : 9.0 0
Michigan 1911553 : 52.5— 1413812 : 38.8 319095 : 8.8 +1
Minnesota 1096 355 : 52.2 751971 : 35.8 252986 : 12.0 0
Mississippi 385005 : 44.2 434547 : 49.9 51500 : 5.9 0
Missouri 1024817 : 48.1 889689 : 41.7 217103 : 10.2 0
Montana, 167169 : 41.7 178 957 : 44.6 55017 : 13.7 0
Nebraska 231906 : 34.9 355665 : 53.6 76103 : 11.5 0
Nevada 203 388 : 45.6 198 775 : 44.6 43855 : 9.8 0
New Hampshire 245 260 : 50.0+ 196 740 : 40.1 48140 : 9.8 -1
New Jersey 1599932 : 54.5— 1080041 : 36.8 257979 : 8.8 +1
New Mexico 252215 : 51.1- 210791 : 42.7 30978 : 6.3 +1
New York 3515027 : 60.0 1862344 : 31.8 482770 : 8.2 0
North Carolina 1099132 :44.3 1214399 : 49.0 165301 : 6.7 0
North Dakota 106 360 : 40.4 124 507 : 47.3— 32566 :12.4 +1
Ohio 2100690 : 47.8 1823859 : 41.5 470680 : 10.7 0
Oklahoma 488102 : 40.6 582310 : 48.5 130788 : 10.9 0
Oregon 326 099 : 49.8— 256 100 : 39.1 73265 :11.2 +1
Pennsylvania 2206241 : 49.8 1793 568 : 40.5 430082 : 9.7 0
Rhode Island 220592 : 61.5 08 325 : 27.4 39965 : 11.1 0
South Carolina 495458 : 44.1 564 387 : 50.3 63300 : 5.6 0
South Dakota 139295 : 43.4 150 508 : 46.9 31248 : 9.7 0
Tennessee 905599 : 48.4 860 809 : 46.0 105577 : 5.6 0
Texas 2455735 :44.1 2731998 : 49.1 377530 : 6.8 0
Utah 220197 : 34.1 359394 : 55.7 66 100 : 10.2 0
Vermont 138400 : 55.5 80043 : 32.1 30912 :12.4 0
Virginia 1070990 : 45.6 1119974 : 47.7- 158707 : 6.8 +1
Washington 899 645 : 52.9 639743 : 37.6 161642 : 9.5 0
West Virginia 324394 : 51.7 231908 : 37.0 70853 :11.3 0
Wisconsin 1071859 : 50.0 845172 :39.4 227426 : 10.6 0
Wyoming 77897 : 37.3— 105347 : 50.4 25854 :12.4 +1
Candidate’s Total 45597228 : 49.9 37841817 :41.4+ 7862865 : 8.6 -1

State-by-state standard rounding generates five times the discrepancy —1 and eight times +1. Trailing
signs indicate the Webster discrepancy finish. Data from International Herald Tribune, 7 November 1996.
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When rounded probabilities do sum to one, one may wish to seek some explanation.
Diaconis and Freedman (1979) investigate the leading digit data of Benford (1938, page
553). It seems likely that the data were beautified in order to better fit the hypothetical
model. Heiligers and Schneider (1992), in their Table 1, present weights that sum to one.
The reason is (personal communication) that they first calculated all figures but one, and
in a final step fitted the last figure to force a sum of one. All numbers in Pukelsheim (1993)

sum to one when appropriate, by using a nondefective method of rounding.

There are plenty of rounding methods that do preserve the side condition of adding up
to one. They have been proposed and investigated by politicians and political scientists,
in the study of apportionment problems for electoral bodies. A fascinating court case of
current date is documented by Ernst (1993). Balinski and Young (1982) is the authoritative
monograph on the subject, and a gem of mathematical writing. They prove that among
all rounding methods only divisor methods are not affected by severe deficiencies. These
“paradoxes” are illustrated by reference to pertinent precedences in the history of the
USA. Therefore we restrict our investigation to divisor methods of rounding which, for our

purposes, we prefer to call multiplier methods.

Our notation is the following. We have ¢ categories (Mosteller, Youtz, and Zahn
1967; Diaconis and Freedman 1979), political candidates (Balinski and Young 1982), or
support points of an experimental design (Pukelsheim 1993). The accuracy (precision,
house size, number of observations) is designated by n. Given a set of weights (w1, - .., w¢)
(the exact probabilities in a table, the proportion of votes per candidate, the weights of an
approximate design), the rounding problem consist of finding integers (ny,...,n.) so that

.
;’ ~ w; and Zigc n; = n.

In Section 2 we review the basic properties of rounding rules R, following Balinski and
Young (1982). For z > 0, R(x) is not single-valued, but a one-element or two-element set.
The associated rounding functions r are characterized by the condition r(z) € R(z). The

two most important families are the g-stationary roundings, and the p-mean roundings.

Section 3 is devoted to multiplier methods. Given a multiplier v > 0, the weights w;
are rounded to r(vw;) € R(vw;). The sum ), r(vw;) can then be augmented or reduced

by varying the multiplier v, according as the discrepancy

d= (Ziscr(ywi)) -n

is negative or positive. The discrepancy vanishes for some value of v. However, that value

depends on the specific set of weights (w1, ..., w.) being rounded.
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The algorithm that we propose in Section 4 starts with an initial guess for the multi-
plier v. The first step is called the multiplier start and gets close to a result, but may leave
a nonzero discrepancy. The second step, the discrepancy finish, consists of a few corrective
iterations, to augment some of the rounded weights if there is a negative discrepancy, or
to reduce some of them if the discrepancy is positive. The initial guess for v is crucial and

should work reasonable well over the whole possible range of weights.

Therefore, in Section 5, we assume the weights (W;,...,W,) to be uniformly dis-
tributed on the probability simplex of IR“. We establish the existence of a unique multi-
plier n for which the expected value of the discrepancy vanishes. Unfortunately, we know

of no simple closed form expression for 7.

For more explicit results, Section 6 restricts attention to multiplier methods based on
rounding rules that are stationary. The expected value of the discrepancy turns out to
be a sum of powers. Some brief historical comments on sums of powers are gathered in

Section 7.

In Section 8 we find unbiased multipliers for g-stationary rounding rules. Unbiased-
ness is understood in the asymptotic sense that the expected discrepancy vanishes for an
increasing accuracy n. The resulting multiplier depends on the number of categories c, the

stationarity parameter ¢ € [0,1], and the accuracy n,

1
Vc,Q,n:n+C q_i : (1)

With these multipliers the expected discrepancy stays bounded of order 1/n as n tends to
infinity. See also Happacher (1996), and Happacher and Pukelsheim (1996).

In summary, the method of Adams (¢ = 0, i.e., rounding up) has multiplier v o, =
n — ¢/2, as recommended by Pukelsheim and Rieder (1992), and Pukelsheim (1993, Sec-
tion 12.4). The other extreme is the method of Jefferson (¢ = 1, i.e., rounding down),
with ve 1, = n+ ¢/2. For the method of Webster (¢ = 1/2, i.e., standard rounding) the
multiplier v, /2, = n is the one that would also be suggested by the Rule of Three.

Standard rounding is just the same as the starting multiplier step for the method of
Webster. The reason for its frequent failure to add to one is that it misses out on the
discrepancy finish of the algorithm. Or the other way round: Standard rounding followed
by the discrepancy finish is a viable method, the method of Webster, which indeed is
the one most pronouncedly advocated by Balinski and Young (1982). In Tables 1 and 2
we use a trailing plus sign or minus sign to indicate the corrective action of the Webster

discrepancy finish.
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2. ROUNDING RULES

Balinski and Young (1982, page 99) base the definition of a rounding rule R on a
signpost sequence s(k) € [k, k + 1], for k = 0,1,... . The signposts are assumed to be
strictly increasing, in order to avoid three-way ties. When z = s(k) coincides with a
signpost, there is a two-way tie and R(z) is defined to be the two-element set {k, k + 1}.
When z > 0 lies between two signposts, z € (s(k—1), s(k)), then R(z) = {k} is a singleton;

for the starting value k = 0 we adjoin s(—1) = —1. Formally, we define
{k,k+1}, if x = s(k);
R(z) = .
{k}, if z € (s(k—1),s(k)).

Alternatively, the signpost sequence and the rounding rule fulfill the basic relation
k € R(x) = s(k—1) <z < s(k), (2)

for all k =0,1,... and for all z > 0.

We concentrate on g-stationary rounding rules, for some fixed value ¢ € [0,1]. By

definition, they are given by the signpost sequence
sq(k) =k+q forall k =0,1,... . (3)

They appear implicitly in Diaconis and Freedman (1979, equation (3.2)), with a view to-
wards equivariance. Our terminology is inspired by Balinski and Rachev (1993). Kopfer-
mann (1991, page 124) calls the induced apportionment methods “linear”. Saari (1994)
considers this family in his equation (4.3.13).

The treatise of Balinski and Young (1982) shows that the p-mean rounding rules, with

p € [—00, 0], play a greater historical role. The defining signpost sequences are

p p\ /P
5, (k) = (%) for all k = 0,1,... (4)

when p € (—00,00). The extreme cases §_o(k) = k = so(k) and 5 (k) = k +1 = s1(k)
coincide with the extreme members among the stationary signpost sequences from (3).

The p-mean rounding rules are nonstationary, except for p = —o0, 1, co.

Both families contain the classical rounding rules: rounding up, standard rounding,

and rounding down. For fixed p € (—o0, 00), as k tends to infinity, we have

Ep(k):k—i-%—i-O(%).
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Table 3. The Three Classical Rounding Rules

Rounding up Standard rounding Rounding down
Signposts k k+ % k+1
q in (3) 0 1/2 1
p in (4) —00 1 00
Method Adams Webster Jefferson

Standard rounding and rounding up or down are members of the q-stationary and p-mean rounding rules.
The corresponding rounding methods are associated with historical names, see Balinski and Young (1982).

This is of special interest for our investigations, because we round numbers of the form nw;,
and we are interested in the behavior as n tends to infinity. From this asymptotic viewpoint,
the family of p-mean roundings shrinks to the classical rounding rules listed in Table 3.

Hence the stationary rounding rules appear to form the richer family.

The fact that a rounding rule R is a set-valued mapping is a bit cumbersome compu-
tationally. Therefore we also introduce rounding functions r that are compatible with R,

by demanding
r(z) € R(zx) for all z > 0.

Hence r is an increasing, piecewise constant function, with jumps at s(k) where it takes
the value k£ or k£ + 1. Evidently a rounding rule R induces many rounding functions r, of

which traditionally some are more often used than others.

Standard rounding, ¢ = 1/2, is usually carried out with the rounding function 7y /o
as described in Section 1. For rounding up, ¢ = 0, the counterpart is the ceiling function
ro(z) = [z] = min{k : k > x}. For rounding down, ¢ = 1, a convenient rounding function

is the floor function or integer part r1(z) = || = max{k : k < x}.

Rounding functions apply to an individual, single argument. When it is a set of
weights that is under consideration, the point is to subject each individual term in exactly
the same way to the given rounding function r. In plain words, as far as the rounding
function r is concerned, it ought to treat each term in fairness and justice. It is a second,
separate step to ensure that the rounded quantities combine to yield the required total.

This is what multiplier methods accomplish.

99



3. MULTIPLIER METHODS

Any rounding rule R has a multiplier method that comes with it. The multiplier
methods that correspond to the classical rounding rules of rounding up, standard rounding,

or rounding down are named after Adams, Webster and Jefferson (Balinski and Young
1982). See Table 3.

Multiplier methods introduce a new, continuous variable, the multiplier v > 0. This
additional degree of freedom is used to fit the side condition that rounded weights sum to
one. It is convenient to assemble the weights into a vector w = (w1, ..., w.). Without loss
of generality we assume w; > 0 for all2 =1,...,c. For a given integer n > 1, the goal is to
round w; to a rational number of the form n;/n, that is, to find appropriate numerators n;.

The condition ), n;/n =1 turns into ) .. n; = n.

Rounding rules do not resolve two-way ties, nor do multiplier methods. Hence a set

of possible numerators is proposed, according to the definition
Mpg(w,n) = {(nl,...,nc) I >0Vi<c n; € R(vw;) and Z n; = n} .
i<c

In the rare, special case when s(0) = 0 and 0 < n < ¢, we define n; = 1 or n; = 0
according as w; is among the n largest weights or not. In general we adopt the convention
O/UJZ' < O/IUj for w; > W .

In terms of the signposts s(k) that determine the rounding rule R an alternative

characterization is as follows.

Theorem 1 (Max—Min Inequality). Letni,...,n. be integers with ) . .n; =n. Then

(n1,...,n¢) is a member of Mg(w,n) if and only if
1 .
maXiSC M S minigc M (5)
i i
Proof. The basic relation (2) now reads s(n; — 1) < vw; < s(n;) foralli =1,...,c.
Division by w; establishes the result. O
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Starting out from an arbitrary member (nq,...,n.) in Mr(w,n) and changing the
accuracy n, we can step up to a member of Mp(w,n + 1) or step down to a member of
Mpg(w,n — 1) without recalculating any multipliers. Let J and K be the set of those

subscripts that attain the minimum and maximum in (5),

g={i<e: 08—, S,
w4 w;
K= {k <ec: 73(7% —1) = maX;<. 78(7“ —1) }
Wi - w;

The next two theorems state that J consists of the augmentation candidates and K of

the reduction candidates, and that these sets also facilitate an enumeration of the set
Mpg(w,n).

Theorem 2 (Augmentation, Reduction). Let (ny,...,n.) be a member of Mp(w,n).

Then we have

jedJ — (nl,...,nj_l,nj—i-1,nj+1,...,nc)EMR(W,n+1),

kel — (nl,...,nk_l,nk—1,nk+1,...,nc)EMR(w,n—l).

Proof. The direct part of the proof verifies condition (5) of Theorem 1, see Balinski
and Young (1982, Proposition 3.3), or Pukelsheim (1993, Theorem 12.5b). For the converse

direction Theorem 1 implies s(n;)/w; < s(n;)/w; foralli=1,... c. O

There always exists a multiplier v that can be used in the definition of Mg(w,n).
This follows by induction from the augmentation part of Theorem 2. As is implied by
Theorem 1, the set of multipliers v that work for w form a compact interval, with lower

and upper endpoint taken from (5).

Theorem 3 (Enumeration). Let (nq,...,n.) be a member of Mr(w,n). Then the set
Mp(w,n) is a singleton if and only if strict inequality holds in (5). Otherwise equality holds
in (5) and there are (a:b) roundings in Mr(w,n), where a is the number of augmentation
candidates in J and b is the number of reduction candidates in K.

Proof. The proof uses similar arguments that establish Theorem 12.7 in Pukelsheim
(1993). For details see Theorem 1 in Happacher and Pukelsheim (1996). O
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4. ROUNDING ALGORITHM

We can now be more precise about our multiplier method algorithm that was men-
tioned in Section 1. An Emacs Lisp implementation of the algorithm is proposed by
Dorfleitner, Happacher, Klein and Pukelsheim (1996).

The algorithm is initialized by choosing a rounding function r that is compatible with
the rounding rule R, and by picking a multiplier v that is thought to work reasonably well

for the given accuracy n.
e The first step, the multiplier start, rounds the weights w; to n;/n with n; = r(vw;).

e The second step, the discrepancy finish, evaluates the discrepancy d = (ZK . nz) —n.

While d # 0, we loop to augment or reduce ny, ..., n. according to Theorem 2.
Upon termination the set Mr(w,n) may be enumerated using Theorem 3.

For standard rounding with multiplier v = n, the result of Mosteller, Youtz and Zahn
(1967), and Diaconis and Freedman (1979) says that the algorithm does not terminate
with the first step, with probability one as n and ¢ tend to infinity. This statement should
not be construed as evidence against the multiplier start. Instead it emphasizes the need

to continue on into the discrepancy finish.

The initial choice of the multiplier ¥ depends on the distribution of the weight vec-
tors w that are fed into the algorithm. Specific applications may suggest specific distribu-
tions. Lacking such specifications, we take any point w in the probability simplex of IR °

to be equally probable.

5. UNIFORMLY DISTRIBUTED WEIGHTS

In the sequel we assume that the weight vector (W7, ..., W,) is random, with a uniform
distribution on the probability simplex of IR ¢. The number of categories, ¢, remains fixed.

Let R be a rounding rule based on the signposts s(k).

The event that for a multiplier v > 0 a component hits a signpost, J, <. Ug>ol1vWi =
s(k)}, has probability zero. Hence, almost surely, R(vW;) is a singletoﬁ, and any two
rounding functions r and 7 compatible with R satisfy R(vW;) = {r(vW;)} = {Fr(vW;)},
for every multiplier » > 0. Thus we lose much of the discrete charm of the deterministic
version of the problem, but are free to choose an arbitrary rounding function r provided

it is compatible with the rounding rule R.
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Given a multiplier v > 0 we define the total

Tc,r,z/ = Zzgc ’I‘(UWZ'). (6)

This is an integer-valued random variable that by choice of v we would like to bring
close to n, in order to achieve a small discrepancy T, ,, — n. Indeed, there is a unique

multiplier 7., , that makes the expected total equal to n.

Theorem 4 (Existence). For v > 0 we introduce £ = max{k > —1: s(k) < v}. Then

we have p 1
c “
E[Tc,r,ll] = pe—1 Zkzo (V N s(k)) ’

If s(0) is positive, then for all n > 0 there exists a unique multiplier n.,, > s(0) that

satisfies E[T, .. . .1 =n. If s(0) is zero, then for all n > c there exists a unique multiplier
Nerm > 8(1) that satisfies BE[T, ;. . .1 =n.

Proof. Define the integer-valued random variable Ny = r(vW7). By exchangeability
we get E[T.,,] = cE[N7]. For k = 0,1,... we have {N; > k} = {W7 > s(k)/v}. This
yields P(Ny > k) = (1 — s(k)/v)c=! for k < ¢, and P(N; > k) = 0 for k > £. From
E[T;,.] =c¢Y 1o o P(IN1 > k) we now obtain the expression for the expected total.

The function f(v) = E[T,,,] is continuous on (0, co). If s(0) is positive then f vanishes
on (0,s(0)], if s(0) is zero then f equals c on (0, s(1)]; in either case f afterwards strictly
increases to infinity. Therefore the equation f(v) = n has a unique solution 7, > s(0)

Or 7c.r.n > (1) according as s(0) is positive or zero. O

6. STATIONARY ROUNDING METHODS

From now on we restrict attention to a g-stationary rounding function r,, with signpost

sequence (3), and denote the total from (6) by
T =3, rale o) o
The basic relation (2) almost surely yields vW; — ¢ < r,(vW;) < vW; — ¢+ 1, and
v—cqg<T.q,<v—cqg+ec.

With vegn =n+ c(q — 1/2) from (1) we almost surely obtain symmetry around n,
c

C
5 .

2

n——=< Tc,q,n+c(q—1/2) <n-+
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In case of ¢ = 2 categories, the integer-valued random variable T5 4 ,424—1 strictly lies

between n — 1 and n + 1. Hence it degenerates to a constant,
T gnt2g-1 =1 almost surely.

In particular, we have 7c,_ » = n + 2q —1 in Theorem 4. Thus the discrepancy vanishes
almost surely when a g-stationary rounding rule is applied to two categories with multiplier
n + 2q — 1. For standard rounding this is already pointed out by Mosteller, Youtz and

Zahn (1967, page 850). In plain words, two candidates never create a rounding problem.

In case of three or more categories we can still be more explicit about the expected

total that appears in Theorem 4.

Theorem 5 (Trisection). For q € [0,1] and v > 0, we introduce ¢ = |v — q| and
e=v—q—1L€l0,1]. Then we have v =L+ q+ ¢, and

c ¢ —
ETequ] = Do ke

Proof. Since s4(k) = k + g, the result follows from Theorem 4, by replacing v — k — g

by £ — k + € and reversing the order of summation. O

For stationary rounding rules the expected total thus is a sum of powers, a prominent

subject in former centuries.

7. SUMMA POTENTATIS

Formulas for sums of squares already appear in Fibonacci’s Liber Abbaci in the thir-
teenth century, see Liineburg (1993, page 132). The idea of expressing Y., ., k“~! as a
polynomial in £ of degree c is presented in Faulhaber’s book Miracula Arith;zetica, pub-
lished 1622 in Augsburg. Schneider (1993) and Hawlitschek (1995) tell of the man and his

time.

Johannes Faulhaber (1580-1635) was a Rechenmeister in the town of Ulm on the
Danube river. Like other craftsmen, the Rechenmeister kept their knowledge a privilege
that was not laid open to the public outside the profession’s guild. Following this tradition,
Faulhaber advertised his arithmetical abilities by publishing a book of problems he claimed
he could solve. He was deeply hurt and felt impaired in his business when a colleague from

Niirnberg put out a solution manual soon after.
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However, Faulhaber’s publications testify to the change of scientific spirit that evolved
during that time. His later writings do explain the solution methods and delineate the
underlying systematic insight. He even took up the new custom of referencing the sources
used. Faulhaber also demonstrated his genius by predicting Judgment Day, repeatedly
though not successfully. This and other dubious mythical speculations may have distracted

from his mathematical achievements that eventually fell into oblivion.

8. UNBIASED MULTIPLIERS

Elementary calculus gives a feeling for the polynomial representation of the sum of

powers that appears in Theorem 5:

¢ 0+1/2 . . N
Czkzo(kﬁ-i-e)c—lxc/‘ (_’13+6)C—1d.'17% <a€+§+6> = (y_q+§) .

—1/2

Geometrically, the addition of 1/2 serves as a continuity correction. Numerically, a poly-
nomial in £+ 1/2 + € approximates the sum much better than a polynomial in £ + ¢, in
that the exponents drop off in steps of two, see Burrows and Talbot (1984). This enables

us to evaluate the asymptotic behavior of the expected total of Theorem 5.

Theorem 6 (Expectation). For q € [0,1] and v > q we have, with £ = |v — q| and
e=v—q—1L€l0,1] as in Theorem 5,

(v—q+3)© 1 [(c 1 7 (¢ 1
ET. )= —7F"71- =
Tesq] ve-1 12\2 (V—q+%)2+240 4) (v —q+ 3)*

31 [c 1 N 127 (¢ 1 +’7Tc(6)
1344\6) (v —q+ 1)° " 3840\8) (v —q+ 2)F pe-1

=u—c(q—§) ),

with a polynomial 7. in € of degree c in the first representation, and a remainder term
pe(v) = O(1/v) as v — oo in the second representation. For even c the sum in the first

representation terminates with last binomial coefficient being equal to (cfz) .

Proof. Section 2 of Burrows and Talbot (1984) carries over to the shifted summands
k + € that appear in Theorem 5, provided they start the summation at £ = 0 rather than
k = 1. An analysis of their formula (2.11) provides the first representation given above.

The second representation follows from the binomial expansion of (v — ¢ + 1/2)°. O
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The remainder terms p.(v) for ¢ = 2,3, 4 categories are as follows:

_alg=1)—e(e—1)

pa(v) ” :
pa(v) = 31/6+qy(q— 1) glg—3)(a- 1);6(6_ 1y(e - 1)’

pa(v) = 61/6+;q/(Q— n_,ale— %/)2(q— D a'a- 1)2)/_362(6_ 1)27
pe(v) = (;) Shks qy(q .o (%) for all ¢ > 3.

From this it is easy to obtain the asymptotic order,

1
)] < .
1 1
P
()] < = 4 s+ —
v —4+ —+ —-
P4 ~— v  b5v? 163

In case ¢ = 2 the multiplier 7., ., = n+2¢—1 yields pa(n+2¢—1) = 0, see Section 5.
For three or more categories, Theorem 6 has a companion result for the variance.

Theorem 7 (Variance). For ¢ > 3 categories and q € [0,1] we have

V[Tc,q,u]:3+E<C)Q(q_%)(q_1)+O(1) as v — o0,

12 1 3\2 v V2

Proof. Straightforward, though lengthy calculations establish the result. For details
see Happacher (1996). O

The preceding formulas emphasize the three classical rounding methods of Adams,
Webster and Jefferson. For instance, in general the variance equals ¢/12 plus a remainder
term that is bounded of order 1/v. For ¢ = 0,1/2, 1, however, the order improves to 1/v/2.
The term ¢/12 in the variance points towards the convolution of rectangular distributions
governing the asymptotic distribution theory in Mosteller, Youtz and Zahn (1967), and
Diaconis and Freedman (1979). See also Happacher (1996).
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Table 4. Expected Discrepancy E[D. 4 ,] for the Three Classical Rounding Methods

¢ Adams (¢ =0) Webster (¢ = 1/2) Jefferson (¢ = 1)
1 1 1
3 o3 " dn 2n+3
1 1 1
1 75 ~om niz
5 10 a4 5 4 1 0 4
3(2n—5) 3(2n—5)3 6n 48n3 3(2n+5) 3(2n+5)3
6 5 1 5 4 1 5 1
2(n—3) 2(n—3)3 4n 16n3 2(n+3) 2(n+3)3
7 28 16 7 49 31 7 28 16
7 2n—7 = 3(2n—7)3 + 3(2n—7)5  4n + 8% T Tozns 2n+7 = 3(2n47)3 + 3(2n+7)°
14 7 2 7 49 31 14 7 2
8 3D T 3m—97 T 3m-0F T3 T 3 T I 3(nid) — 3mtd)® T 3nid)s

The expectation of the asymptotically unbiased discrepancy D q,n is bounded of order 1/n. Depending on
the categories, ¢, and the method, q, the constants exhibit a strange symmetry between ¢ = 0 and q = 1.

Finally we return to the discrepancy T, 4, — n that instigated the study of the totals
in (7). With v, 4, from (1) we define the asymptotically unbiased discrepancy,

Degn = Tc,q,n+0(q—1/2) —n.

Theorem 6 verifies the asymptotic claim that is implied by the name,

1 1 1 o0
STV PR Y BT £
2 yc,q,n n

For ¢ < 8 categories and the classical methods, the exact expected values of D.,, are
shown in Table 4. The exact distribution of D, , ., is derived by Happacher (1996).
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