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 Effects of Intraclass Correlation on Weighted Averages

 SHAYLE R. SEARLE and FRIEDRICH PUKELSHEIM*

 Weighted averages of class means using different sets of

 weighting factors are compared in terms of sampling vari-

 ances and of relative weights given to the class means.

 Details are given for the 1-way classification, and extensions

 to other models are indicated.

 1. INTRODUCTION

 When subclasses of data have unequal numbers of ob-

 servations, averages of the subclass means can be defined

 in a variety of ways, depending on the weights used for

 (linearly) combining the subclass means. At least three dif-

 ferent weighting systems are often used: (I) weighting by
 the number of observations, which leads to the grand mean;

 (II) weighting equally, which yields the simple average of

 the subclass means; and (III) weighting inversely according

 to variances of the observed subclass means. In the 1-way

 classification, with the fixed effects model, III is the same

 as II; but with the random effects model (which we call the

 mixed model, see Sec. 3.1) in which the class effects are

 taken as random, I and II are special cases of III corre-
 sponding to an intraclass correlation of 0 and 1, respectively.

 Variances of these weighted averages are compared in

 each model, and the manner in which changes in the intra-

 class correlation affects the relative weights given to the

 class means is described. Extensions to 2-way classifications

 are suggested.

 2. FIXED EFFECTS MODELS

 2.1 A Model

 Suppose that yij is the jth observation of the ith class of
 a 1-way classification, with i = 1, . . ., a andj = 1, . . ..
 ni; that is, a classes and ni observations in the ith class.
 Then the model equation for yij can be taken as

 yij = g + ati + eij = gi + eij' (1)

 in which gi = ,u + ai is the population mean of the ith
 class and the ei1 terms are random variables, identically
 distributed with zero mean, variance o2-, and zero covari-
 ances. Under these conditions the best linear unbiased es-

 timator (BLUE) of gi and the sampling variance of that
 estimator are

 ni

 A= Ini= y/n and VF(yi) = o-2/ni, (2)
 j=1

 respectively, similar to Searle (1971, p. 235 and 339). In

 (2) the subscript F in vF(yi) emphasizes that the variance
 is based on the fixed effects model.

 2.2 Weighted Averages

 We begin with weighted averages I and II of the intro-

 duction. The first is denoted by g,tt in which weights pro-
 portional to the numbers of observations are used:

 /I n iniilEni
 (All summations are with respect to i, over the range i =
 1, 2, . . ., a.) The second weighted average is denoted by

 1l and is based on equal weights:

 /1 = >Li/la.

 The third average mentioned in the introduction uses weights

 inversely proportional to v(yi) and so, on using (2), is the
 same as Fn

 1:(,ini (JU2) j(nj /(y2) = >njigj1/n1= j n

 A general form of weighted average is to use arbitrary,

 (usually) positive weights wi:

 /-w = EwigilEwi.

 Then gln and gte are special cases of ,u w, since wi = ni gives
 /1w = gn, and wi = 1 gives pw = gte. The BLUE's of
 these three averages and their sampling variances are

 = :njyj1jnj = y. ., with VF(/f) = oE-1/ni, (3)

 A = yjjla, with VF(/Ae) = a2, lln. a2 (4)

 /w = EwiYiEwi,

 with VF(fAW) = a (2wini) () (5)

 Clearly, 2n is the grand mean y. , whereas le is the average
 of observed class means, Eyila.

 2.3 Discussion

 Estimators (3), (4), and (5) are BLUE's of different para-
 metric functions, so comparing their sampling variances
 does not seem, a priori, to be beneficial. In Section 3, where
 we are interested in the case in which the subclass means

 gi are all the same, namely ,u, the three estimators then all
 estimate ,u and comparing variances of those estimators is

 then of some interest. As a prelude, the variances in (3)-
 (5) are compared, beginning with those of A, and AfW.

 From applying the Cauchy-Schwartz inequality, Ep2Eq2
 ? (pq)2, we have
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 Hence

 ' (Eww1) ( i)

 and so from (3) and (5),

 V(Il n) C /F() (6)

 Therefore, in the fixed effects model, no weighted average

 of the gi's has a BLUE with variance smaller than that of
 ln- This is an attractive property for ft,n. In particular, it
 applies for wi = 1, giving

 V(iltn) C VF /I

 This is perhaps a little surprising, since defining an overall

 mean as /-te seems more natural than does gln because of
 the dependence of p,2 on the numbers of observations in the

 classes.

 In applications, ,w for a particular set of wi values can
 well be a parameter of interest; for example, if three varieties

 of wheat are grown in a county in acreages proportional to

 w1:w2:w3, the county's mean wheat yield per acre is puw.
 Therefore, if in some experiment designed to measure yield
 the areas in which the three varieties are grown are pro-

 portional to nl:n2:n3, different from w1:w2:w3, then p,n #

 ,/W, and Atw will be the estimated mean of interest. Never-
 theless, (6) shows that Atw always has variance never less
 than that of ft,n. This suggests one reason for having subclass
 sizes in data proportional to subclass population sizes.

 3. MIXED MODELS

 3.1 A Model

 Suppose with the model equation (1) that we take the ai's
 as uncorrelated random effects with zero means and variance

 o-2, with the covariance between every ai and every ehk
 being zero. The eij terms retain the same mean, variance,
 and covariance properties as described following (1). With
 these properties, the model is usually called the random

 effects model, or random model, of the 1-way classification.

 But since ,u is a fixed effect and the ai's are random effects,
 it is strictly a mixed model, and we think of it in that manner

 for purposes of estimating ,u in the presence of the random
 effects.

 3.2 Weighted Averages and Estimators

 In the preceding mixed model the BLUE of ,u, to be
 denoted by fr, is similar to Searle (1971, p. 463):

 r=2ni (y2 + a 2 Y ni (y 2 + aJ2 a + e alO + eO

 with VMa(fr) = 1 / ; n (7)

 The subscript M in VM of (7) denotes variance based on the

 mixed model. The estimator ftr in (7) is, of course, a special

 case of ,i with w, = ni/(nio-r, + o-e2); and if fti, for other
 values of w1 is to be used, its variance is

 VM(/IW) = a+ oI/ni) Wi (8)

 derived by replacing (o2 Ini in vF(/iW) of (5) with (o2R +
 ( -2Ini.

 3.3 Comparing Variances of Estimated Averages

 First, from (8) and (5) it is easily seen that

 Ewi2
 VM(Qw) a (o w )2 + VF(Iw) > VF(/Lw),

 for (J 2 > 0.

 Thus every weighted average has variance in the mixed

 model that exceeds its variance in the fixed model, as one

 would expect. (When o-2 = 0 the variances are equal.)
 What is more interesting is that by applying the same rea-
 soning to (7) and (8) as is used in deriving (6), it is easily
 shown that

 VM(/.Lr) ? VM(/.LW). (9)

 This shows that in the mixed model no weighted average

 fw has smaller variance than does lr (as is to be expected
 because Pr is the BLUE of ,u).

 A special case of (9) is VM(Jitr) V VM(/.Ln). Nevertheless,

 VF(/ln) of (3) is less than VM(/Ir) of (7), as may be seen by
 observing that

 1 /VF (IJn) -1 /VM(ftr)= = ni[[1/ - 1/(ni +J e2)]>0

 for (J2 > 0.

 Hence

 VF(/.Ln) C VM(/Lr) ? VM(/Ln). (10)

 Thus the variance of fr in the mixed model is between that
 of f,( in the fixed and mixed models, with these variances
 being equal when (J2 = 0, for then ,, = fr

 3.4 Relative Weights for Observed Subclass
 Means in g,

 In ft, the observed subclass means, Yi, are weighted in
 proportion to their ni-values; in /le they are weighted equally.
 In the mixed model with intraclass correlation p = a 2,/
 (o-2x + (e2), it is interesting to see how the weights in

 /Qr change from those of /ln when p = 0 to those of /te
 when p = 1. To observe this, write /lr of (7) as

 nip + 1 - pYi nip + _p

 Then p = Oyieldsf/ro = = y of (3) and p = 1 gives

 /lr, = /te of (4). This is not surprising. p = 0 is equivalent
 to Ca(2 = 0, which reduces the mixed model to being a fixed
 effects model yij = ,u + eij and so /lr,o = fln2 the BLUE
 of ,u in that model. And p = 1, although equivalent to

 ( = 0, is more interestingly the case of observations within
 each class being perfectly correlated-in effect, identical.
 Hence no matter what the value of n, is, Y, has variance

 Co-2, and so the linear combination of yi's that has minimum
 variance iS /le = Y2yi/a.
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 Despite these consequences of putting p = 0 and p = 1
 in Ar it is nevertheless surprising how quickly the weights

 given to each yi change from being proportional to ni in

 Ptr,O = /I n to approaching being equal in I2r,I = yIe as p
 increases from 0 to 1. Consider two classes, one described

 as having a large number of observations, nL, and the other

 having a small number, ns, with of course, nL > nS. In
 Ar the ratio of the weight given ys to that given to YL is rp,
 where, from (11),

 coefficient of ys in /tr,p

 P coefficient of YL in btr, p

 ns(nLP+ -P) p p+(l- p)/nL

 nL(nSP + 1 - P) p + (1 - p)lns

 Corresponding to p = 0 with I2r,O = ln we have T =
 nSInL; and as p increases from zero to unity, Trp increases
 from TO = nSInL to Tm = 1. Thus as p-> 1, we see that
 ys, the data mean of the smaller-sized class, gets increas-
 ingly larger weights in Alr,p, relative to YL. It is interesting
 to see that this increase can, depending on the magnitudes

 of nL and ns, be quite appreciable, even for very small values
 of p. This is so because the first derivative of Tr with respect
 to p is

 Tp= aTp/ap= (1/ns- l1nL)(p+ ( - p)lns)2, (13)

 and for small values of p and not-too-small values of ns,
 this can be relatively large. In particular, for p = 0,

 To = ns(1 - nSInL), (14)

 and so when nSInL is small and ns is not too small, T6 can
 be relatively large [e.g., for ns = 20 and nL = 100, T0 =
 20(1 - .2) = 16]. This is the slope at p = 0 of Tr plotted
 against p. The value 16 represents an angle of 86.40 from
 the horizontal, which means that, for values of p near zero,

 r,p increases very rapidly from T = ns ML= 20/100 = .2.
 This is evident in the second column of Table 1, which

 shows values of Tr for three pairs of ns nL values and a
 range of values of p.

 3.5 Discussion

 The BLUE of ,u in the mixed model is Alr; it reduces to
 A= y in the fixed model wherein (o-2 = 0, and to Ale
 = ila in the trivial case of (o- = 0 when all observations
 in each class are then identical (and of course, if every ni
 has the same value, then ,2ln = I.le = y. .). Each of the
 estimators flnt ILe, and ftr has variance in the mixed model
 that exceeds its variance in the fixed model, as is, of course,
 to be expected. In contrast, as in (9), in the mixed model

 flr has the smallest variance of any (linearly) weighted av-
 erage, although in the fixed model On has still smaller vari-
 ance.

 In Atr the weight given to ys having ns observations,
 relative to that given to YL with nL > nS observations, is Trp
 given by (12). The value of -ri, is nS'nL for p = 0, that is,
 in ft,2; and it is 1.0 for p = 1, that is, in fte. The rate of
 increase in rTp for p increasing from 0 to 1 is given by r,p

 Table 1. Dependence on Intraclass

 Correlation of the Relative Weights Given to
 Two Observed Subclass Means in the Estimator

 ,r,p = X[n1l(n,p + 1 - p)] y,IY2[nj1(njp + 1 - p)]

 coefficient of Ys in u,p p + (1 - p)InL

 Intraclass p coefficient of yL in Ar,p p + (1 - p)lns
 correlation, for three (ns, nL) pairs

 2
 p aa ns = 4 ns = 20 ns = 5

 a+ea2 nL = 20 nL = 100 nL = 100

 0 (4r,o = Any

 mo = nsInL) .20 .20 .05
 .05 .33 .61 .28
 .1 .45 .75 .38
 .3 .71 .92 .70
 .5 .840 .962 .842
 .7 .923 .983 .925
 .9 .978 .996 .979

 1.0 (r1 = Ae,
 71 = 1 ) 1.00 1.00 1.00

 of (13) with T6 = ns(1 - nSInL). Thus for small values of
 p the rate of increase in Tp depends not only on nSInL but
 also on ns; hence small changes in p can bring about big
 changes in Tp. This is illustrated in Table 1, where, for the
 example having ns = 20 and nL = 100, changing p from
 0 to .05 changes Tp from .20 to .61. Thus not only can
 relative sizes of data subclasses be important in the contri-
 butions that observed subclass means make to fr, but ab-
 solute sizes are also important. This is also illustrated in
 Table 1, where in each of the first two examples nSInL =

 .2: in the first of these, ns = 4 and .05 is .33, whereas in
 the second, with ns = 20 the value of T05 is .61, nearly
 double its value for ns = 4.

 4. EXTENSIONS

 Consider a 2-way nested classification in which the num-

 ber of main classes is a, with the ith having bi subclasses,
 in the jth of which there are nij observations Yijk for k = 1,

 . .. nij, with i = 1, . . ., a and j = 1, . . ., bi. A mixed
 model for this situation can be taken as Yijk = Pi + f3ij +
 eijk with gi as a fixed effect and 3ij and eijk as random effects
 with zero means, variances a-2 and a-2, respectively, and
 with all covariances zero. Then, similar to fr of (7), the

 BLUE of gi is

 b nij y b nij

 j=1 ni1+o V ' j=1 nlijOaj + e

 Discussion of this and of linear combinations of the ,i2's
 can be made similar to those of Sections 2 and 3. Analogous
 extensions could also be made for a 2-way crossed classi-

 fication for combining BLUE's fiij = Yi;. in situations in
 which v(yij.) = (2 + 0-21nij

 [Received February 1985. Revised September 1985.]
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