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 Establishing x2 Properties of Sums of Squares Using Induction

 SHAYLE R. SEARLE and FRIEDRICH PUKELSHEIM*

 The between-classes sum of squares in a between- and within-
 classes analysis of variance has, under normality, a x2 dis-
 tribution. Although "substantial mnathematical machinery"
 (Stigler 1984) is often used in classroom derivation of this

 distribution, it can be avoided by using induction and in-
 dependence properties of standard normal variables. This is
 the derivation given here for unequal subclass numbers data.
 Independence of the between- and within-classes sums of

 squares is also shown.

 KEY WORDS: Helmert transformation; Independent sums
 of squares; One-way classification; Unbalanced data.

 1. INTRODUCTION

 Stigler (1984) rightly points out that "In introductory
 courses in mathematical statistics, the proof that the sample

 mean X and sample variance s5 are independent when one
 is sampling from normal populations is commonly deferred

 until substantial mathematical machinery has been devel-
 oped" (p. 134). Contrasting this, Stigler then gives a nice
 proof for the one-sample case that requires understanding
 nothing more than normality and independence, together
 with the definition of a x2 variable as the sum of squares

 of independent and identically distributed (iid) standard nor-
 mal variables. The sum of independent x2 variables being
 distributed as x2 is also used. His method of proof, which
 relies on induction on sample size, is extended here to sums
 of squares in a one-way classification with unbalanced data

 (unequal subclass numbers data). It is in this situation of
 the analysis of variance of unbalanced data that Stigler's
 "substantial mathematical machinery" is, generally speak-
 ing, nowhere more evident; for teaching purposes there are
 great advantages in being able to avoid such complexities,
 as is done here.

 For observations yij for i = 1, . . ., a and j = 1, .
 ni, assume that observations having the same value of i
 (those in the ith class) are identically distributed with a

 normal density having mean /ip and variance cu2. Write this
 as

 Yij - iid N(p, ,U2) forj = 1, * , ni, (1)

 and let this be true for each i = 1, . . ., a. Assume also
 that observations in each class are independent of those in

 every other class. Thus, using v(yij) for the variance of y1j
 and cov(yij,yhk) for the covariance between yi1 and Yhk,

 v( yi;) = a2 and COv( Yij,Yhk) = 0 (2)

 for all i, j and for all h, k except i = h with j = k.
 The sample mean of the observations in class i will be

 denoted by
 ni

 j= E yijlni. (3)
 j=1

 We define (for subsequent convenience) partial sums of the
 ni values:
 i a

 si =E n, and particularly Sa = n, = n. (4)
 =1 rt=1

 In addition, the mean of all observations in all a classes

 will be denoted by
 a a

 ma = = niyi /Eni

 a a ni

 - > niYilSa E E Yijlsa- (5)
 i=1 j=1

 Then from (2), (3), and (5),

 v ( Yd = o2Ini and v(ma) = a-2Isa; (6)

 cov(yij,yj) = a2/ni and cov(yj,yj ) = 0, (7)

 fori $ i'; andfori = 1, ., a

 cov( Yi, ma) = ni c2/(niSa) = a2/lSa* (8)

 Four distributional results are taken as known: (a) that
 normal variables having zero covariance are independent;

 (b) that linear combinations of normal variables are nor-

 mally distributed; (c) that a X2 variable [having k degrees

 of freedom (df)] is definable as the sum of squares of k iid
 standard normal variables; and (d) that sums of independent

 x2 variables are x2 variables. These results are referred to
 frequently in what follows.

 We deal with between- and within-class sums of squares

 defined for a classes as
 a a

 Ba = > ni(yi - ma)2 = > njy- - sam2 (9)
 i=l i=1

 and
 a ni

 Wa =E E (Yi yj i) (10)
 i=1 j=1

 with

 a ni

 Wa = > W, for W, = y(Yy - Y)2 (11)
 =l ~~~j=1

 2. INDEPENDENCE

 The independence of Ba and Wa stems directly from (a).
 Consider one of the terms in Ba of (9) that is squared, say

 - ma, and a similar term from Wa of (10), say Yhj - Yk
 The covariance of these terms for i = h is, from (7) and

 (8),

 cov(yi - ma,yij - Y)

 cov(1 Y, Yit) - v(TY) - cov(ma,yi) + cov (ma,Yi)
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 - cr2(1/ni - l/ni - liSa + liSa)

 = 0;

 and similarly for i $ h,

 WOV(y- ma,yhj - Y) = 020(0 - 0 - - + -) = 0

 Thus Yi - ma and Yhj - Yh have zero covariance, and so,
 since by (b) each of them is normally distributed, they are
 by (a) independent. Since this is so for all i, h, and j, it is
 true for all pairs of terms that are squated, one in Ba and
 one in Wa. Therefore Ba and Wa are independent.

 3. INDUCTION

 By induction on a we show that Ba/U2 Xa-i The
 starting point is the case of a = 2. From (9),

 B2 = n1y2 + n2y2 - (n1Y1 + n2 2)2/(nI + n2)

 = njn2(Y1 - Y2)2/(n1 + n2).

 From (6) and (7),

 V(Y1 - Y2) = a2(1 + I) = (ni 2)U2; (12)
 n I n2 n, n2

 under the hypothesis H: , = ,U2, (12) and (b) yield

 Y - Y2 - N[O,(n1 + n2)o 2/n, n2j .

 Therefore on defining g = [nln2/(n1 + n2)] 1/2 (y, - Y2)
 we have g - N(0, 1); so since B2/o-2 = g2, (c) gives B2!
 2 - 2 = 2_ 1. Thus Ba/(72 x - 1 is certainly true for

 a = 2. With this as a base we now show that assuming Bal
 a 2 - 2_X- yields Ba+ I/u2 -x2 that is, induction on a
 establishes that Ba/U2 2X is true generally.
 Relationships between ma and ma + 1I and between Ba and

 Ba+ +1 are needed that are extensions of well-known recur-
 rence formulae for sample means and variances given in
 Searle (1983) and Stigler (1984). First, from (4) and (5)

 a+ 1

 ma+1 = E niyilsa+l
 1= 1

 = (Sama + na+lya+i)/(Sa + na+1)

 = ma + na+i(Ya+l - ma)lSa+l. (13)

 Second, from (9)
 a+ 1

 Ba+i = 1 njyi - Sa+ima2+i
 i = 1

 and on using (13), this is
 a

 Ba+1 = niy + na+1Y2+i
 i = 1

 Sa+1 [ma + na+i(Ya+l - ma)lsa+ ]2
 a

 = E ni Y + na +i12+1 - (Sa + na + 2)m
 i = 1

 - 2mana+i(Ya+l - ma)

 - n+ 1 (Ya+ - ma)2/Sa+1
 a

 = E niYi - Sama + na+i1(Ya+i - ma)2

 - na+i1(Ya+ 1 - ma)2/sa+i1

 = Ba + na+i(l - na+i/Sa+i)(Ya+i - ma)2;.

 that is,

 Ba+I = Ba + 8 for = (a ?la) (Ya+l - ma)2 (14)
 Sa+ I

 Now Ya+ 1 and ma are independent, and so

 V(Ya+I - ma) = u2 (l/na+I + lISa) = Sa+IOu2Ina+ISa-

 Hence, under the hypothesis

 H : g, = -2 = *-- =ga+l, (15)

 Ya+I - ma - N[O, (Sa+I/lna+ISa)L72]. Thus, just as in
 deriving B2/o2 X2 we have 8/u-2 X. Furthermore,

 Ba = LIa= I ni(yi - ma)2 and for i = 1, ., a,

 COV(Yi -maYa+I ma) = u (O _ -_ O? + ) = 0.
 Sa Sa

 Therefore, since Y3 - ma and Ya +1 - ma are by (b) normally
 distributed, they are by (a) independent. Therefore in (14)
 Ba and 8 are independent; so with Ba/ 2 - 2_ 1 and 8/uo2
 2 this eansa
 x I this independence means from (d) that Ba + I /Iu2
 Ba/u-2 + 8/u2 - X3-i+i = Xa* Thus is the x2 property
 of Ba proven, without recourse to any "substantial mathe-
 matical machinery."

 4. THE WITHIN-CLASS SUM OF SQUARES

 The x2 property of Wa can now be derived from that of
 Ba. Suppose that ni = 1 for i = 1, . . .,a. Then Ba becomes

 J= l(Y1 - y)2 for y = Yia= I yila, and so by the immediately
 preceding result, ly=I (yi - -)2/u,2 2 1 -l A special
 case of this is Wi of (1 1):

 n,

 W , 2 E (y - 3i.)2/ 2 2

 Hence, since the Wis are distributed independently, W/uf2
 = Ea= Wi/uf2 has by (d) a x2 distribution on ?=I=(ni -
 1) = n. - a df; that is, W/uf2 - X2

 5. APPLICATION

 The ultimate application of these results is, of course,
 that under the hypothesis (15), which gives Ba/ur2
 2_ of -a',2- 2 Xa - independently Wa/2 x. the ratio

 F (Ba/u2)/(a - 1) Bal(a - 1)
 (Wal/2)1(n. -a) Wa(l(n. -a)

 has the F distribution on (a - 1) and (n. - a) df and can
 be used as a test statistic for the hypothesis (15).

 6. EXTENDING HELMERT'S

 TRANSFORMATION

 In the simple case of xi for i = 1, . . ., n with xi - iid
 N(0,u2), the X I-i distribution of S22 = I (Xi - )2
 072 can be derived by using what is known (e.g., Lancaster
 1972) as Helmert's transformation:

 = E j for i=2,...,n, (16)

 with A11 = 1/[i(i - l)]i/2 for] = 1, 2, ..., i -l1and
 A = - [(i - l)/]i/l2. It is then easily shown that the u.

 of (16) are iid N(O, o-2) and that S2 = Ein=2 Ui2; then (d) gives
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 An extension of (16) provides a second proof that Ba!o 2

 Xa It uses
 Xa-i~~~~~~~~

 Zi= tijyi for i = 2,.. .,a, (17)
 j=1

 with tij = nj(nilsi- I si)"'2 for j = 1, . . ., i - 1 and tii
 - (nisi -/si)112. It can then be shown that v(zi) = o-2 and
 cov(zi, Zh) = O for all i #& h = 2, .. ., a and that

 21=2 Z2 = Ba . Hence the zi are iid N(O,o-2), and so Ba/02
 2

 Xa-i-

 In passing, observe that ni = 1 for all i reduces tij and
 tij of (17) to Aij and Aii, respectively, of (16)-as one would
 expect.

 A matrix comment is not out of order: on defining ti =
 O forj = i + 1, . . ., a and i = 2, . . ., a, the resulting

 (a - 1) x a matrix T = {tij} for i = 2, . ., a andj =
 1, . . ., a is related to a more general Helmert-style matrix

 of Irwin (1942), quoted as H in (4) of Lancaster (1972).

 The relationship is

 H = n'l a D,

 where n' is the row vector [n . . . na] and D is the diagonal

 matrix of diagonal elements 11(n1) 12, . . ., 1/(na)12.

 [Received February 1985. Revised May 1985.]
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 On Minimum Variance Unbiased Estimators

 K. X. KARAKOSTAS*

 The problem of finding minimum variance unbiased esti-

 mators of various parameters for parametric distributions is

 an important one in statistics. This article gives analytical

 formulas for the minimum variance unbiased estimators of

 parametric functions, which are usually used in a classroom,

 for two types of densities. The first type is the one-parameter
 regular exponential family, and the second is a two-param-

 eter family of a continuous random variable whose range
 depends on the unknown parameters.

 KEY WORDS: Completeness; One-parameter regular ex-

 ponential family; Parametric functions; Range depending on
 unknown parameter; Sufficient statistic.

 1. INTRODUCTION

 Suppose that we have a random sample X1, X2, . . .,Xn
 from a distributionf(x;0), 0 E 0. Then an interesting the-
 oretical problem is to characterize those parametric func-

 tions h(0) for which a minimum variance unbiased estimator

 exists and to give its analytical form.

 In Section 2 the one-parameter regular exponential family

 f(x;O) = c(O)exp[Q(O)T(x)]v(x), 0 E 0, (1.* 1)

 is considered. For that family, this article characterizes a

 class of parametric functions h(0) for which a minimum

 variance unbiased estimator exists and gives an analytical

 formula for finding that estimator. Density functions of the

 formf(x; 01, 02) = Q(01, 02)M(x), 01 < x < 02, 01 < 02,
 are considered in Section 3. For such families, ready-to-use

 analytical formulas are given for a minimum variance un-

 biased estimator for either h(0l, 02), h(01), or h(02).

 2. REGULAR EXPONENTIAL FAMILY

 Let XI, X2, . . *, Xn be a random sample from a distri-
 bution whose form belongs to (1.1). Then it is well known

 that T = i T(Xj) is complete and sufficient for 0, with

 g(t; 0) = [c(0)]nexp[Q(0)t]v*(t; n). (2.1)

 Following Guenther (1978), we see that if the distribution

 g(t; 0) of a complete and sufficient statistic T of 0 can be

 written as

 g(t; 0) = w(t)g*(t; 0*)h(0), (2.2)

 where w(t) and h(0) are, respectively, functions of t and 0

 only and g*(t; 0*) is another density of the same form as

 g(t; 0) with possibly a different parameter 0*, then u(t) =

 1/w(t) is the minimum variance unbiased estimate for h(0).

 Now let h(0) = [c(0)]kexp[Q(0)r], where k ' n is a
 nonnegative integer, be the function of 0 for which a min-

 imum variance unbiased estimate is requested. Then from

 (2.1) we have

 g(t; 0) = [c(0)]kexp[Q (0)r] [c(o)]n -k

 x exp[Q(0)(t - r)]v*(t; n)

 = [c(6)]kexp[Q(6)rlg*(t - r; 0*)

 x [v*(t - r; n - k)]-lv*(t; n), (2.3)

 *K. X. Karakostas is Lecturer, Statistics Section, Department of Math-

 ematics, University of Ioannina, Ioannina 45332, Greece. The author is

 grateful to both referees for their helpful comments and suggestions.
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