Optimal Designs for Linear Regression

By FRIEDRICH PUKELSHEIM, Freiburg im Breisgau

Abstract. A brief survey is given of characterizations of

optimal experimental designs in the approximate design theory.
These may be useful also for the exact design theory, as is
demonstrated with some new results for two-way block designs.

1. Introduction.

In experimental design theory a design £ is taken to be a
probability measure with finite support on a design spacé ¥,
with the interpretation that a proportion E{(x) of all observa-
tions is to be drawn under experimental conditions x € X .
In the exact theory, the weights £ (x)
of the form 0, 1/n, ..., (n-1)/n, 1, and this leads to designs
which are realizable for sample sizes n, 2n, In the

are restricted to be

etc.
approximate theory, £ (x) may attain any value between 0 and
1 and thus, .
a design which is realizable. But many problems, are discussed

more easily in the approximate, rather than the exact theory.

in general, only provides an approximation to

i

Traditionally, the examples to the theory are mcvmw<wmmm into
two main classes, one where the design space ¥ is discrete,

and one where ¥ is a continuum. However, . the mhuownnmammm
of a design space, and the discreteness inherent »: the exact
nerH< different
both, a discrete and a continuous design space may vm;h:mwwnmm
in either the exact or the approximate w:monw? as mmonwo:‘m.
illustrates by qgample. In Section 2 we first uw<m md,MUﬁHObnmu ,

atée characterization of optimal designs for linear regression.

are of a quite

approach :mn:ﬂm.. Therefore
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25 Optimality characterization.

The objective of optimal design theory is to find designs ¢
which provide a maximum of information on the unknown model
barameters. We shall now specify the assumptions whieh allow to
make this objective more precise.

Suppose that under every experimental condition x in the design
<x which follows a
normal Qwunnﬁwcnwo: with mean f(x)'g and variance g2,

Space ¥ we can make a real observation

Here
the regression function f on ¥ is assumed known, taking values
in -x such n:mn,wnm image f(x)

02 > 0 form the unknown parameters. All observations are inde-

is compact, while 8 € zx and

pendent, regardless of whether they are drawn under identical
or under distinct experimental conditions,

as detailed in Krafft
justify to compare two designs E

Standard 1linear model considerations,
(1978) (1980),
and n by means of their information matrices M(£) and M(n),

.

or Silvey

defined by

ME) = [ E(x)f(x)fat .
e 1 X

’

More generally, when K is a vwmmonwcma k by s matrix of full
column rank s, the information matrix for K'B is given by

c(M) = (k'mk)"1

provided N.m. is wam:numwmchm..Amwnwamcpm- nmmnmcwmv ‘under M.
A formal criterion mon‘pnmsnwwwmcwMWew is that the range - of
the matrix M contains the range of K, and in %:nw case the

Fin’ IEES

s by s matrix C(M) is well defined and positive definite;
otherwise we simply set C(M) = 0.

. e
S LI N C A . 4

Only in rare cases will it be @ommncwm to maximize information
matrices in the partial ordering ” of non-negative definite
matrices. In general, we must further specify a real optimality

criterion j(C) in order to' make the problem amenable to a



- 34 =

solution. We shall take j to be one of the functions

u.uASu:E%nu\ﬂtu,:Euaongtm,
i.e., uvAnv is the generalized mean of order p € (-«,1] of

the (positive) eigenvalues of C.

Now let M be a convex compact set of non-negative definite
k by k matrices, a subset of all information matrices. The

optimal design problem then reads:

Maximize uUAnAZVV. subject to M € M,

A matrix M € M which solves this problem will be said to have
m-maximal u@uw:monamnwo: for K'B. Notice that this maximization
problem is in terms of, not designs £, but information matrices
M. And it is a problem of maximizing information, rather than

one of minimizing risk.

Theorem 1. Let M € M be an information matrix under which
K'B is identifiable. Then M has Mm-maximal uU»M:monammwo:
for K'8 if and only if there exists some k by k matrix G
with MGM = M such that, with B = o.xﬁv+ux.m and C = C(M),
trace AB s trace CcP " for all A € M |

The key feature of this optimality characterization is that the
competing information matrices A enter it linearly, and that
inversions are required of the optimality candidate M, only.

1 is the unique choice for G and

When M is non-singular, then M~
Theorem 1 may be derived by differential calculus (Kiefer, 1974,
p. 865). The general proof is based on duality theory of ‘convex
m:mw%wwm (Pukelsheim 1980, p. 356); 'the 'generalized -inverse G
of M which appears in the characterization is constructed via
the dual of the optimal design problem. -Alternative proofs use
subdifferential calculus, the Strong Lagrangian Principle, or

directional derivatives (Pukelsheim & Titterington 1982).

3. Two-way block designs.

We now turn to an application of the approximate theory to a
discrete design space. Suppose the experimental conditions are
reflected by a triplet (i,j,k), where i is one of v varieties,
j is one of b blocks of a first factor, and k is one of c

blocks of a second factor. The design space then is

¥={1,...,v} x {1,...,0} x {1,...,c} ,
and a design & may be taken to be a stochastic vector of vbc

dimensions, with entries £(i,j,k) in lexicographic order.

In the model for the elimination of two-way heterogeneity, the
variety effects QM~ and the block effects Y, and mx are assumed

J
non-random and additive:

Y, . = oy +.<w + 6, + €

k i,3.ke1 °

The error terms are independent and identically distributed
according to a rlormal distribution with mean 0. The vector
parameter B and the regression function f thus are
a e,
Befy) RV | . g0 =[e, ).
§ i ' ¥ mM
where e, etc. is the i-th Euclidean unit vector of appropriate

order.

Given a design £, let r € RV be the variety marginals, i.e.,
r; = Dy I E(4,3,%), and let s € R® ana t € RS be the block
marginals of the first and the second factor, respectively.
Further denote by Su‘ sm. and SHN the two-dimensional marginals
of varieties with blocks of the first .factor, of varieties
with blocks of the second factor, and of blocks of the first
with blocks of the second factor. sﬂwnw:m >H for a mpmm01mw
matrix with r on the diagonal, the information matrix M of £
then is completely determined by the two-dimensional marginals,
according to



<4
[}
=z = >
N = N

W
EHN = , say.
A

As usual, the parameters of interest are the variety contrasts

(og-oa., ..., a,- ) o= HH<|Q<\< ¢ 018, with J, the v by v

matrix each entry of which is unity. Denote by A" the Moore-

Penrose inverse of the matrix A.

Lemma 1. Let M be an information matrix under which the

variety contrasts are identifiable, and choose a symmetric
. . _ At " _

generalized inverse F of F >n £~N>mswm. Then the infor

mation matrix C = C(M) for the variety contrasts is

= b - w htwr - -w. At F(w,-w At
o w.A'w (Wy-W,A W) ) F(W,-w AW

r ] 21861 12)" -

G' F

A+ +
E:mnmmmmsmppmmOI 2~-2H>mspw and H = >nlzpbmsm themselves

are Schur complements. The proof of Lemma 1 parallels the

H G
Thus C may be read as a Schur complement of F in ﬁ g.

argument in Krafft (1978, p. 220) who considers a special

case. For block-block product designs, i.e., when SHN = st',

i § _ _ g Atugs ,
the matrix C simplifies to C >m @%>mzu W, Wy +orr',
since F = >n|nn. allows the choice F = >n.

It is now easy to establish optimality of variety-block product

¢ % . _ i _
designs, by definition these designs have zp = rs' and SN =

rt'. A design with uniform variety marginals will be said to

be equi-replicated. Denote by E the set of all two-way block

designs £, and by mAHov its subclass with positive variety
marginals r, given. Our next result also follows from the
general theory (cf., Pukelsheim 1982, Thm. 4), but we here
give a simpler direct proof. Recall that uniform optimality
requires an information matrix which is maximal in the partial
matrix ordering, while universal optimality (Kiefer 1975,
p. 334) means maximal trace as well as C being positively

proportional to x< = H<|u<\<.
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Theorem 2. (a) Variety-block product designs with variety

marginals r_ are the only uniformly optimal designs in

o
manov for the variety contrasts, their common C-matrix is
>n - Houm. (b) Equi-replicated variety-block product
mmmwm:m are the only designs which are universally optimal

in E for the variety contrasts, with C = x<\<.

Proof. (a) The product design £ = r, ®s e t has C-matrix

C(E) = >H nﬂonm. For every other design n with variety

marginals 2 we may choose F in Lemma 1 to be non-negative

o
definite. Then

* = - - - + — ) '
C(n) = >H0|Sw>mzm >Ho Honm ASH ﬂom.v>mASH r.s )
s >Ho - HOHW = C(E) .

Thus & is optimal. Equality holds in the second inequality
if and only if SH = r s' and, by symmetry, ZN = HOﬂ.. In

o
this case SNnSH>MzH~ = 0, and this forces equality in the
first inequality. (b) The Cauchy Inequality immediately

3 ¢ - ' = — ' —
gives nnmomADHo Honov 1 R < 1-1/v.

As an example, consider the variety contrasts for 4 varieties
in 6 by 6 blocks. Krafft (1978, p. 371f.) quotes a generalized
Youden design GYD, exact for sample size 36, with determinant
information quo<cv = 0.23148, and another exact design OED*
with information uoﬂomcv = o.Nquww m%hw eorem 2(b), an optimal
approximate design is OAD = 1 oﬁ uueﬂ 3|/36, with information

4710 0
uoao>cv = 0.25 = 1/v. And OAD is eéxact for 36 observations!

Variety-block block-block product designs are uvnovnwamw even
for a certain maximal system of parameters. The proof of this
makes use of Theorem 1 and parallels that for one-way block
designs (cf., Pukelsheim 1982, Thm. 5). This parallelism breaks

down as soon as incomplete designs are considered.

*Recently shown to be optimal for size 36 among all designs
with uniform block-block marginals. (Personal communication
from O. Krafft)
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Indeed, suppose GYD is a generalized Youden design and let
mwn MH ={1,..,vlx{(1,..,b} and mN c mm = {1,..,v}x{1,..,c}) be
the sets of points which support the variety-block marginals Z~
and SN. respectively. Denote by mAmH.mNV the set of all two-way
designs whose variety-block marginals have a support contained
in mH and mw- respectively. As far as variety contrasts are
concerned, GYD may fail to be optimal in mAmH.mwv. This is a
marked difference to the behaviour of balanced incomplete block

designs in one-way models (cf., Pukelsheim 1982, Thm. 7).

Non-optimality of generalized Youden designs. We choose a
model for 3 varieties in 6 by 6 blocks. Let D(E) be a 6 by 6
array whose (j,k)-entry is the set of varieties to be observed
with block-block combination (j,k). Consider the designs:

332232 3+2 3 2 243 3 2
3311331 3 1+43 1 3 3+1 1
D(GYD) = 212 211 D(BAD) = 2 1 2+41 2 .1 142
232332 2+3 3 2 3+2 3 2
331311 3 3+1 1 3 1+3 1
211212 2 1 1+2 2 1 241

3+2 ¢ 4 243 ¢ @
¢ 143 ¢ ¢ 3+1 ¢
D(OAD) = ¢ ¢ 2+1 ¢ ¢ 142
243 ¢ 4 342 ¢ ¢
¢ 3+1 ¢ ¢ 1+3 ¢
@ ¢ 142 ¢ ¢ 241

GYD is a generalized Youden design, BAD is a better and OAD is
an optimal design; their C-matrices are of the form oxu with

P(GYD) = 1/6 < P(BAD) = 1/5 < p(OAD) = 1/4 .

Theorem 1 may be used to prove that OAD is universally optimal
for the variety contrasts in mAmH.mNu. and in mﬁmu.mwv. The
above designs are exact for size 36, 48, and 24; and the ranks

of their information matrices are 13, 13, and 11; respectively.
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