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Abstract: Necessary and sufficient conditions are established when a continuous design
contains maximal information for a prescribed s-dimensional parameter in a classical linear
model. The development is based on a thorough study of a particula; duz! problem and its
.ﬁ;‘c‘rﬁn&y’ with the G‘lﬁiﬁifu chigﬁ problem, extending partial results and earlier approaches
based on different*al calculus, game theory, and other programming methods. The results apply
in particular to a class of information functionals which covers c-, D-, A-, L-optimality, they
include a complete account of the non-differentiabie criterion of E-opumality, and provide a

constructive treatment of those situations in which the information mauix is singular. Corol-

laries pertain to the case of s out of k parameters, simultanecus optimality with respect to
several criteria, multiplicity of optimal designs, hounds on their weights, and optimaiity which is
induced by admissibility.
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1. Introduction

Convex programming methods are applied to the approximate, or continuous
design theory of classical linear models. Emphasis is on characterizing those
designs which provide maximal information on the unknown parameter, ip
contrast to the customary approach which prefers to minirnize some kind of ioss.
Although the distinction between maximizing informaticn and minimizing foss
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seems rnargmal, the information pomt of view has led to a consistency of
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n non-differentiable
= penerel, our approach covers Kiefer’s (1974
L-optimality, and other familiaa concepts such as
D A ooumalltv for all, or for s Gut ui & parameiers. We shall now give ¢

short summary, and then list the notation to be used in the sequel.
339

-
J

J
espect t
spec

B c

0
)
(1]

o
. G

2

]
-,
-3
2 o
~1
Mo



340 F. Pukelsheim
Section 2 introduces the optimal design problem (P) as one of maximizing an
inf nnmation fu monal over a compact ¢ nvex set T of mformatxon mamces. for

tion is ccmstructf,d bv first reducmg any k x k mformatmn matrix M e‘.’lR toasxs
matrix J(M). called information matrix for K'@, and then mapping J(M) into a
non-negaiive real number by means of a positively homogeneous and concave
function j, called information functional. Simultaneous optimality with respect to
all information functionals leads to uniform optimality (Theorem 1), existence of
optimal information matrices is settled by semi-continuity (Theorem 2). Section 3
characterizes optim~¥ty using duality theory of convex analysis. The dual problem
(D) amounts to maximizing the polar information functional over the polar set of
information matrices, this problem being considerably smoother than the primal
problem (P) in that the new objective function does not require any mairix
inversion and always is semi-continuous. U it main result l the det'aiied duaiity
relation, established in Theorems 3 and 4
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he int 0 1 measures and their information matrices is studied by
boundmg the number of support points of £ given M (Theorem 6), identifying
possible support points of design measures which are optimal (Theorem 7), and
computing the weights that an optimal design assigns to its support points
(Corollary 7.1).

In Section 5 these results are applied to the j,-family of information functionals
which correspond to Kiefer’s ®,-criteria (Theorem 8). Corollaries pertain to the
case of s out of k parameters, linear parameters K'g which do not have full rank
s, simultaneous optimality with respect to all j,-criteria, and optimality induced by
admissibility. Section 6 concludes the paper with some examples.

In this paper all matrices are real matrices. The foilowing notation will be used
throughout:

R Euclidean n-space of column vectors
mak xs L T L Y JIE | B | R S
138 LINC 1Hucar spaC Ol datl K A § Malrices
A" AT A thn tonmamiiom  nse nellémnsme: o tmwrascs  dhia A Do
Vs WV U § LHC Ualppusy, dil albliidaly K-HIVEILC, LIIC IVIUUIT™Ir Ciuw
EMLIaraa Af o maatesv A
HIIVLIOW ULl Q iliatlilA M
({ [23Y trace A'R tha Euclidaan matriv innar nradnat
\4é 3y 25y TAMVWY SR &Py LIV A UVWLIVIWVOIEL LARGARA RN RBRISANGE ‘Jl\luu\nl
Al Jirace A'A, its associated norm
Sym(k) the linear space of all symmetric k X k matrices
Amin{lA) ] . o : S I
A (A) t the smaliest and largest eigenvalue of a symmetric matrix A
NND(k) the closed convex cone of all symmetric non-negative definite

k x k matrices
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A>B| if and only if A~ B is non-negative definite, the Loewnur
B A ordering of symmeiric matrices
PD(k) the relatively open convex cone of all symmetric positive

definite k X k matrices

A real function j is called super-additive if j{C+ D)= j(C)+j(D); a concave
function j is said to be closed if j is upper semi-continuous.

2. Information functionals

Consider a classical linear model Y ~(XB; 521} in which n real observations
Y,..... Y, form a random R"-vector Y which has mean vector XB and disper-
sion matrix ¢*I,. The n > k matrix X may be chosen by the experimenter prior to
drawing the observations, as will be specified in Section 4. Among all linear
functions X'B of the vector parameter 8 €R* only those are of interest which are
identifiable in the model Y~ (XB; oI,). This means that when the mean vector
of Y may be represented as both X and Xy with two values B, yeR*, then K'B
and K'y musi coincide. The following definition is adapted to the present
situation in which K is fixed and X may vary.

Definition 1. Let K be a fixed k X s matrix of rank s. Then the set A(K) is defined
to consist of ali those matrices A € NND(k) whose range contains the range of K.

Hence K'B is identifiable in the model Y --(XB; o®I,) if and only if X’X lies in
A(K). As is easily seen the set A(K) is a convex cone, its relative interior is
PD(k), and its closure is NND(k). If s <k then both inclusions PD(k) cA(K) <
NND(%) are proper and U(K) is neither relatively open nor closed, if s =k then
A(K) equals PD(k). The following notions aiin to distinguish one model from
another by the different amount of information they contain about K'B.

Definition 2. Define J to be t1e function from NND(k) into NND(s) which nmaps
A into (K'AK)™' if AeN(K), and into 0 otherwisz.

It is well known that the function J is well defined, concave, and isotone, see
Pukelsheim and Styan (1979, Theorem 1), Gaffke and Krafft (1979, Theorem
4.8). In a normal model Y~N, (XB;c°l.) the information matrix for K'B is
J(X'X)/o?, in the sense that it provides the Cramér-Rao bound for unbiased
estimation of K’'B, see Rao (1973, Section 5a.3), and that it determines the power
of the F-test for K'B =0, see Krafft (1978, Satz 20.1). Information matrices
associated with different design matrices X need not be comparabie in the
Loewner-ordering <, and this suggests to study real functions j of J, besides J
itself. Certainly j should have properties which appropriately relate to the concept
of information.
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As a consequence every information functional j is concave and isotone, and
satisi.es j(0)=0. If j is strictly concave then it is also strictly isotone, i.e., C<D
#ad C#D imply j(C)<j(D). However, j(C)=trace C is a strictly isotone
information functional which fails to be strictly concave. Other information
functionais are:

j1.(C) = trace CL, (L e NND(s), I.#0).
(N e o DI N/D £ et Ly
AL)=UHakc LU/y) o, \P=1,pPFV),

io(C) = (det O)'%,
j—W(C) = Amin((:)'

L o LPON ~

2282883282022 L QoL QXA &Y

j"(D)=inf{{C, D)/j(C) | Ce PD(s)}.

inf{C. D) CeNND(s), ||Cl| = 1}/sup {j(C) | Ce PD(s), |C||=

Mcreover j° is closed, being the infimum of a collection of upper semi-
continudas tunctions.
Moie 1s poi ‘aeu thaa just closedness of j, in order to ensure ciosedness of the

compositicit j<f An information functional j will be said to vanish outside PD(s)
if lim, (o /{1y e—.",)i“. for all singular matrices C,e NND(s).

Lemma 1. The composition joJ is non-negative on NND(k), positive on U(K),
positively homogeneous, super-additive, concave and isotone, and saiisfies j°J(0) =
N Liivthnsmmnsa $4 T 30 alncad 36 awed nalee 3£ 05 o2 Lo 2 1 DY\
V. wnlrmore j°J0 1 Clded i Gna only iy j vanisnes ouisiae rins)
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let CoeNND(s) be singular, and define C,=Cy+el. Verify J(KC.K') =
{K'(KXC,K')*K} '=C,. Now Corollary 7.5.1 in Rockafellar (1970) yields

lim j(C,) = 1lim joJ((1—A)KK'+AKCoK") = jo J(KC,K") = 0.
€0 AT

Conversaly, assume that j vanishes outside PD(s), and for A e NND(k) dcfne
A, = A+el,. By Theorem 7.5 in Rockafellar (1970) closedness of joJ follows
provided lim, o joJ(A,)=joJ(A), for all A eNND(k). This limit formula cer-
tainly holds for A € A(K), since then even K'A'K tends to K'A™K, sce Lemma
5.6.3 in Bandemer et 2l. (1977). Henrce consider A¢A(K), and let A be its
maximal eigenvalue. Since K'(I, — AA*)K#0, there exists a non-zero R®-vector z
such that A(K'K)"Y2K'(I, - AA*)K(K'K) "> zz'. The following estimate -is
then easy to derive:

K'(A+eh) 'K> e '/K' (I ~AADK+(A+e) 'K'AA*K

=(A+e) (K'K)'2{L, + e AKK'K) 2K (i, - AA)K(K'K) " 2)(K'K)* 2
> (A+e) YK'KYYHIL +¢ 'zz’H{K'K)"2.

With the singular matrix Cy=2z'z(K'K) '—(K'K) Y?zz'(K'K)""? this yi:ids

JA)S (A +e)K'K) YL, — (e~ 2'2) "2z’ {K'K) '
=(A+e)Co+e)K'K) Yil(e+2'2).

Monotonicity of j, and again Theorem 7.5 in Rockafellar (1970) finally give
lim, o joJ(A,)=(A/z'2)lim, o j(Co+ e(K'K)™ ') =0, as desired.

Now assume I to be a compact convex subset of NND(k) which in:ersects
A(K). Any member of I will be called an information matrix. The optiiza' ! .ign
problem then reads:

P) Maximize joJ(M),
subject to Me M.

The optimal value v = supyeq joJ(M) is the maximal j-information for ~ £ in
M, any informaticn matrix M e M for which jeJ(M) attains this value will ko said
to have M-maxiinal j-infermation for K'B.

A special case arises when s = 1. Then K may be identified with a R*-ve=tor c,
and the concept of information functionals trivializes, since jeJ(A)=i(1);""A ¢
whenever A € (c). Hence in this case an optimal solution of (P) will sim;lv be
caid to have M-maximal information for ¢’B. The situations in which use of
information functionals is redundant are described in the following theorem; if an
information matrix satisfies any one of its four statements it will be called
uniformly optimal for K'B in M, cf., Kurotschka (1978, p. 1367).

Theorem 1 (U-optimality). For every information matrix M € M the following four
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statements are equivaleni:
(a) M has Yi-maximai j-information for K'B, for all information functionals j.
(b) JIM)> J(A), forall Ac I},
() KM KLXK'AK, for all AeMNAK), and M cA(K).
(d) M has M-maximal information for c'B, for all c in the range of K.

Proof. Apply (a) to j,,{(C)=2z'Cz to obtain (b). Conversely, (b) implies (a).
Equivalence of (b) and (¢) is immediate, Now assume {c). If ¢ = Kz, with zeR®,
then M e(c). Choose any competing information matrix A e MNA(c). From
MM+ -MDAeMNAK) it follows that ¢'M c=z’K'M Kz=z'K'{A\M+
(1-AMA}YKz=Ac’M c+(1-A)c'A7c. Letting X tend to 0 shows that M has
M-maximal information for ¢'B. Conversely, (d) implies (c).

The topological assurptions underlying the optimal design problem (P) have an
immediate consequence concerning the existence of optimal information matrices.

Theorem 2 (Existence). If j vanishes outside PD(s) or if M is a subset of U(K)
then there exists an information matrix in I which has M-maximal j-information
for K'B.

Proof. If j vanishes outside PD(s) then joJ is upper semi-continuous, by Lemma
1. and hence attains its supremum over the compact set IX. In fact, the proof of
Lemma 1 shows that if I is a subset of A(K) the same argument applies to
h(M) = joJ(M) if MeM, h(M)= - otherwise.

More and proper use of convexity will be made in the following section on
necessary and sufficicnt conditions for optimality.

3. Duality theorems

The optimal dssign problem (P) will be paired with a dual problem (D) which
efiectively amounts to maximizing the polar information functional j° over the
polar sct M’. For the set M of information matrices its polar set is the closed
convex set given by

M ={BeR"*|(M,B)=1, forall MeM}.

Because of the monotonicity behaviour of j° it suffices, in fact, to study the
smaller set N defined by

=M NNND(k).

With the convention 1/0 =+ the dual of the optimal design problem is cf the
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following type:

(D) . Minimize 1/j°%K'NK),
subject to NeR.

The next two theorems relate probless (P} and {D) in the expected manner: they
bound each other, and they share the same optimal value.

Theorem 3 (Mutual boundedness). For every information matrix Mc M and for
every matrix Ne: one has jeJ(M)=1/j% K'NK), with equality if and only if M
lies in 2U(K) and Conditions (1), (2), (3) are satisfied with C=J(M) and D =
K'NK:

(1) trace MN =1,

(2) MN = KCK'N,

(3) j(O) « j/UD)=trace CD.

Proof. If M¢A(K) then joJ(M)=0<1/j°(K'NK), and equality is impossible. If
M e A(K) the assertion follows from the triple inequality

12(M, N)2(C, D)= j(C) - j%(D).

Conditions (1), (2), (3) correspond to cquality in the first, second, and third
inequality, respectively.

The definition of M’ gives 1=(M, N), and (1). Since N is taken to be
non-negative definite we may continue (M, N)=|M'?N"3?, Now T(A)=
MY**KCK'M"?* A is an orthogonal projection on R***, since C=(K'M*K)™ .
The Pythagorean Theorem yields ||M2N"3? z || T(M'2N'?)|?, then, with equal-
ity if and only if MY2NY2=T(M'>N'?). The fact MeU(K) entails
M'2M'**K = K, Condition (2), and

"T(MlmNuz)“z = trace Nllellell2+KCK'Ml/2+M1/2+ KCKIM1/2+A41/2N1/:’.
=(C, D).

The last inequality follows from the definition of j°.

The value of Theorem 3 lies in the explicit information obtained in Conditions
(1)-(3). Also it makes evident that for a matrix Me to have IM-maximal
j-information for K'B it is sufficient to find a matrix Ne3 which satisfies
joJ(M) - j(K’NK) = 1. Theorem 4 now shows that this cendition is necessary as
well.

Theorem 4 (Duality). /n order that an information matrix MeI have M-
maximal j-information jor K'B it is necessary and sufficient that there exists a
matvix NeR such that j°J(M) = 1/j°(K'NK). More generally, one has
sup joJ(M)=min 1/j°(K'NK).
NeR

Meil
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Proof. With the conventions log(0) = — and leg(+%) = +0, the assertion may be
rephrased with logejoJ(M) in place of jeJ(M), and —log j"(K'NK) in place of
1/j%K'NK). On R*** define the functions

flAY=0 it AeliR.
= +00 otherwise,

g(A)=logejoJ(A) if AeW(K),

= -0 otherwise.

The primal problem then reads equivalently: Maximize g(A)—f(A) over R***,

For the first p2:t of the proof assume that M intersects PD(k). Then the relative
interior of the effective domain of f is contained in PD(k), by Lemma 2 in
LaMotte (1977), and thus meets the relative interior of the effective doimain of g.
Hence Fenchel’s Duality Theorem applies (Rockafellar 1970, Theorem 31.1) and
states that

sgp{g(A) ~-flA)} = mgn{t"‘(B) -g*(B)},

where f* and g* are the functions conjugate to f wnd g, respectively. We now
verify that the righh minimization problem is nothing but a disguised version of
the dual problem (D). By definition,

¢*(B)= inf {{A, B)—logejeJ(A)}.

AeWK)

In particular, g* has the same value at B and 1B +3B’, so that B may be taken to
be symmetric. Steps 1-4 will show that g*(B)=1+log j°(K'BK :.

Step 1. If B¢NND(k), then g*(B)=-—%. For choose a R*-vector u with
' Bu <20, Along the path I, + auu’ monotonicity of logejoJ gives

g*(B) = inf{trace B + au'Bu —logejeJ(I, + auu')} = —x.

=0

Step 2. If Be NND(k) and K’BK =0, then g*(B)=-. For along the path
aKK' one has

g*(B)= inf{-log a - logojo J(KK")} = —0,

o >0

Step 3. If Be NND(k) and K'BK # 0, then g*(B)=1+log j%(K'BK). For when
CePD(s), then (KCK',B)=(C, K'BK)>0, and J(KCK"Y=C. Define Ac=
KCK'[(C, K BK), then A, e€A(K), and

g*B)= inf {(Ac, B)-logejeJ(A:)}

CePDUs)

= inf{1 - log(j{CO)XC, K'BK))}
(&

= 1+log j*(K'BK).
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Step 4. If BeNND(k), then g*(B)=1+log j°(K’'BK). Fur this is trivially true
if j°%(K'BK)=0. Otherwisz use (A, B)ZjoJ(A)' j%K'BK) from ike proof of
Theorcm 3 to obtain

g¥B)Z inf {joJ(A):j*K'BK)-logejoJ(A)}
Ae¥(K)

= inf{aj°(K'BK)—log a} = 1+log j°% K’'BK).
a0
By definition, f*(B) = suppem(M, B), so that f*(B) is positive for B € NND(k),
B #0. For fixed B, consider the function

h(a) = f¥(aB) - :™*(aB) = af*(B)— 1 -log a — log j°(K'BK), for a>0.

Unless g*(B) = ~», the unique minimum of h occurs at 1/f*(B) and is equal to
log f*(B)—log j°(X’'BK) = ~log j°(K'NK), with N = B/f*(B)eN. This completes
the first part of the proof.

The second part merely uses the fact that I intersects A(K). Choose a matrix
M e M which has maximal rank m, say, and choose a matric U cR**™ which has
the same range as M and which satisfies U'U=1,. Then A = UU'AUU’, for
every AeR, and UU'K=K. Verify (UU'AUU")"=U(U'AU)'U’, so that
J(A)=(K'A"K) '=(K'UE"U’'K) ! = H(E), say, with E = U’AU. Thus problem
(P) is ‘equivalent’ with the problem

(P)  Maximize jo H(E),
subject to Ee U'NU.

The first part of this proof appiies o (P’) and the problem

(D)  Minimize 1/j%(K'UFU’'K),
subject to Fe{U'TRUY NNND(m).

It is not hard to see that {U'TRUY NNND(m) = U'RU. Replacing F by U'NU
and using UU'K = K establishes the relation between (D') and (D) which com-
pletes the proof.

Traditionally convex analysis prefers minimization of convex functions to
maximization of concave functions. However, the ®,-criteria of Kiefer (1974) all
happen to be, not only convex, but even log-convex. In the present setting
log-convexity no longer appears to be accidental but finds a natural explanation,
namely, any function @ given by @(A)=1/joJ(A) is log-convex since —log P =
logejoJ certainly is concave.

Theorems 3 and 4 contain sufficient information to formulate yet another
optimality characterization which does not explicitly refer to the dual problem
(D). As a motivation for Theorem 5 postmultiply both sides of Condition (2) first
by N'?>* and then by their respective transposes. Replacing K'NK by D this
yields the equation

[*] MNM = KCDCK'.
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If an optimal information matrix M is non-singular it follows that
M 'KCDCK'M™' must be a member of R, it is for singular matrices that the
notion of contracting g-inverses is now introduced.

Definition 4. A g-inverse G of an inforrnation matrix MeI is said to be
contracting if there exists an optimal solution N of the dual probiem (D) such that

u'Nu = u'G'MNMGu, for all ucR

If G is a contracting g-inverse of M then the projection MG of R* is a
contraction of the cylinder Z ={ueR*|u'Nu =1}, ie.,, MG(Z)< Z. Moreover,
the projection (MG® MG)(A)= MGAG'M of R*** is a contraction of the polar
set {N}*={A eR*** | (A, N)=1}. The construction of contracting g-inverses of M
is geometric in nature, based on complementary subspaces of the range of M as
sought and discussed by Silvey (1978, p. 557).

Lemma 2. For every information matrix M eI which lies in A(K) there exists a
positive definite contracting g-inverse G of M.

Proof. For NeNND(k) define Nx = NK(K'NK)*K'N. Since the nullspace of
K'Ny = K'N is contained in the nulispace of Ny it follows that nullspace K'N
range Ny = {0}, so that R* =range K +nullspace Ng. If N lies in R so does N,
since

1 E(M, N) — "NI/‘ZMI/ZMZ ;‘lNl/zK(K'NK)+ KIN1I2N1/2M1/2"2 — (M, NK)

And if N is optimal then sv is Nk, since K'NgK = K’'NK. Fix one such optimal
solution Ny.

The assumption M € A(K) implies R* =range M + nullspace Ni. Let r be the
rank of M, and choose some k X (k —r) matrix H such that its columns span a
subspace of the nullspace of N which is complementary to the range of M, define
G ={M+HH"™'. Then G is a positive definite g-inverse of M, see Rao (1973,
p-34). From I, = MG + HH'G and N¢H =0 one gets u’'Ngu = u’'G' MNMGu,
whence G is also contracting.

Theorem 5 (Equivalence). Let MeI be an information matrix which lies in
A(K), and let C be the matrix J(M)=(K'M"K)'. Then M has M-maximal
j-information for K'B if and only if there exist a g-inverse G of M and a matrix
D € NND(s) with the properties that

J(C) - D) =trace CD =1,
and that G and D jointly satisfy the system of inequalities
trace K'GAG'KCDC=1, forall Ac.

Mcreover, if M has I-maximal j-information for K'8 then for every contracting
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g-inverse G of M there exists a matrix D e NND(s) such that G and D have the
stated properties. And if G and D have the stated properties, then actually
trace K'GAG'KCDC =1 whenever A has M-maximal j-information for K'f>.

Proof. For the direct part assume M to be optimal. Let G be a contracting
g-inverse of M, with associated optimal solution N of the dua! problem, define
D = K'NK. Conditions (1)-(3) yield j(C)j%D)=trace CD = trace MN = 1. Equa-
tion [*] before Definitioa 4 leads to G'MNMG = C'KCDCK'G. The contraction
argument shows that (A, G'’KCDCK'G)={(MGAG’M, N)={(A,N)=1, as de-
sired.

For the converse part assume that G and D have the stated properties. Define
N=G'KCDCK'G, then NeR, and j°%(K'NK)=j%D)=1/j(C). Hence hotii M
and N are optimal solutions of their respective programs, and trace AN =1
whenever A is optimal as well, by Condition (1).

Theorem 5 splits the characterization of optimal solutions of the design
problem (P} into two parts, according to the fact that the objective function is a
composition of the functions j and J. The first part is in terms of the s X s ratrices
C and D; in many cases the solutions D of the equations j(C):j%D)=
trace CD =1 can be descrited explicitly. The second part mainly concerns the
k x k matrices G and A; inversions are required only of the matrix M which
poses as a candidate for optimality, whereas the irequalities are linear in the
competing information matrices .A. As expected, the matrices C and D disappear
completely in case of c-optimality.

Corollary 5.1 {c-optimality). Let MR be an information matrix whick lies in
A(c), c eR*. Then M has M-maximal information for c'B if and only if there exists
a g-inverse G of M such that c'GAG'c=c'M ‘¢, for all A e.

If the rank of M is maximal then the expression ¢'GAG/'c is invatiant to the
choice of the g-inverse G, and may be written as ¢'M~AM c. This, in conjunc-
tion with Theorem 1(d), gives the following characterization of uniform
optimality.

Corollary 5.2 (U-optimality). Let M €Ik be an information matrix with maximal
rank. Then M is uniforrmly optimal for K'B in M if and only if KM~ AM K<
K'MK, for all Ae.

The design problem (P) need not have a unique optimal solution, but at least
when j is strictly concave only 2 surprisingly special type of multiplicity is
possible: given one opumal information matrix all others are obtained as solutions
of an hihomogensous drear matnx equation.
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Corollary 5.3 (Multiplicity). Suppose the information functional j is strictly con-
cave. Let M e be an information matrix which has IM-maximal j-information for
K'8. and let G be a contracting g-inverse of M. Then any other information matrix
A eMNAK) alse has M-maximal j-information for K'B if and only if AG'K = K.

Prooi. For the direct part assume A io be optimal. Strict concavity of j implies
J(M)=J(A)=C, say. Let D e NND(s) satisfy j(C)j%D)= trace CD, and suppose
Dz =0, zeR® It is casily seen that for a>0

J(C+azz")j"D)=(C +azz', DY=(C, D) = j(C)j*D) = j(C + az2')j%D).

But since j is strictly isotone h(a)=j(C+ azz') can be constant only if z=0.
Hence D must be positive definite. Apply Condition (2) to the optimal solutions
A and G'KCDCK'G of (P) and (D), and nostmultiply by K. Cancel CD in the
resulting equation AG'KCD = KCD. For the converse part premultiply AG'K =
K by K'A™ to obtain J(M)=J(A).

Theorem 5 comes closest to the classical Kiefer~-Wolfowitz type equivalence
theorems, see Kiefer and Wolfowitz (1960) and Kiefer (1974). It should be clear,
however, that Theorem 5 is no substitute for Theorems 3 and 4 on duality, the
latter also allow to determine the optimal value v, to identify optimizing se-
quences jeJ(M;) — v, and to establish non-existence of optimal designs. Examples
~ill be given in Section 6.

The system of inequalities in Theorem S involves one incquality for each matrix
A € M. In many cases fewer incqua'ities will do, namely, when S is a subset of
information matrices whose conivex hull is IR then only the inequalities for A€ S
need be considered. Furthermore, if an optimal information matrix M is written
as Aa convex combination of A, ...,A;€S, then necessarily trace
K'GA,G'KCDC = 1,for all i=1{, ..., l. More can be said if more is known of the
structure of S, as in the following section.

4. Design measures

The statistical assumptions underlying the design problem typically go further
than outlined at the beginning of Section 2. Usually the expectation of the ith
observation Y, is taken to be of the form f(x)'B8, so that the R*-vectors

flxy), ..., f(x,) appear as the rows of the matrix X. In such a linear regression
model an experimental design for a sample size n simply consists of some n-tupel
(x;....,x,) where every level x; lies in a specified experimental domain X, telling

the experimenter to draw the ith observation Y; at level x,. Since the numbering
of the observations is immaterial one may as well quote of the n-tuple
(X40o.., x,) only its distinct levels x,,...,x, and their associated standardized
frequencies ny/n. . .., m/n. Accordingly a design of size n is a probability measure
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j==1 Jx
Large sample considerations suggest the following definition, see Elfving (1952,
p. 256), Klefer (1959, p. 281). The assumptions on f pertain to its range rather

than to its domain of deﬁnmon. see Kiefer and Wolfowitz (1960, p. 363), Silvey
and Titterington (1973, p. 23).

Definition 5. Let f be a R*-valued function defined on a set X such that its image
f(X) is compact. The set 5 is defined to consist of all probability measures & on (the
o-aigebra of ail subsets of) £ which have a finite support, any such £ is cailec a

A &S o

design measure. The information mairix of £ is defined to be M(£) = jx f(x)f(x) dé,
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Rockafellar (1970, Theorem 17.2). It is cusiomary to assume that the image f(X)
spans all of R¥, then there exist positive definite matrices in M(5); this property

is not fullfilled in all models of interest. In the sequel we merely assume that
M(Z) meets A(K), when K'B is the parameter under investigation. With these
assumptions the set M(E) is a feasible choice for the set I which enters into the
design problem (P). However, since all results in Sections 2 and 3 are given in
terms of information matrices M(£) rather than design measures &, the following
questions suggest themselves: Given an information matrix M e M(5), possibly
optimal, how can cne recover the number of support points, the support points
themselves, and the weights of those design measures which have information
matrix M?

The following bound on the number of support points is due to Fellman (1974,
Theorem 4.1.4) and generalizes earlier results of Elfving (1952, p.260) and
Chernoff (1953, p. 590). However, it does not depend on any optimality criterio
as the proof of those authors sugges', but simply is a properiy of ihe sXs
information matrices J for K'f.

Theorem 6 (Surnort points) r every information matrix A € M(E H\ which lies in
WERR U USUPIAUE L PRIIILSF. 2TUT CUTT Y el rrs AU Tit AT =
W(K) there exists a design measure £€X wzt.h. net  more than

s(s+ 1)/2 + s(rank A —s) support points such that aJ{A) = J(M{&)) for some a = 1.
Proof. Let r be the rank of A. Chouse a g-inverse G of A, a kX7 matrix U
which has the same range as A and which satisfies U'U =1, and define Q=
I, - U'GK(U'GK)*. Then A € A(K) entails

K=AGK=U(UAU-QU AUQU'GK = UT(A)U Gk

Fa AW F N im £ 17 Ll ) WY
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when the linear operator T on the space Sym(k) is defined by T(B)=U'BU
QU’'BUQ. The range of T has dimension s(s+1)/2+ s(r—s)=d, say, since it is
spanned by T(U[LLTU) =l %] when Q is in its simplest form [3 ,°].
Choose a design measure ne.., such that A =M(n), and define C to be the
convex hull of all matrices f(x)f(x)’ with x being a support point of n. Hence the
image T(C) is a compact convex set which contains the matrix T(A), let a be the
largesi number =1 with aT(A)e T(C). Then aT(A) lies on the boundary of
T(C), and by Caratheodory’s Theorem there exist d points x;,..., X, in the
support of 7 such that with new weights £(x;) one has aT(A)= T(M(§)). Thus
range M(¢)crange A, and UU'M(§)UU’ = M(£). This entails

M(§)GK = UT(M(E)U'GK = aUT(A)U'GK = aK,

-

. L L W 7 15 S ry ) 7 £ 3\ P 1 T AN\ b 73 £ 2\
implying M(§)€ A(K), KAK=aK'M({&)"K, and aJ{A)=J(M(§)).

For the present approach it seems naturai that a design measure £ inherit its

optimality properties from its information matrix M(§). By Theorem 2, then,
. . .
1
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matricae ic the cantinunuc imaan af tha n_fold Cortacian neaduct af FI¥) and
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hence comnact. This clearly ilinstrates that the sets M(S) and (5 ) are
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The const amtq in the dual m-oblem (D) now lend themselves to an appealing
:nterpretation. When a matrix N e NND(k) is identified with the cylinder (includ-
ing ellipsoids) that it defines in R, i.e., with the set {ueR* | u’'Nu=1}, then N
consisis precisely of all f(X) covering cylinders.

This idea dates back to Elfving (1952, p. 260) and is adopted expressis verbis by
Silvey (Wynn 1972, p. 174), Sibson (1974, p. 684) and Silvey and Titterington
(1973, p. 25). In fact, further geometric considerations lead to a direct proof of
duality of (P) and (D) in case of c-optimality, see Pukelsheim (1979), and also
yicid the foiiowing bound on the optimal vaiue v of probiem (P). Defire the

regressmn ball RN 1o be the convex huli of the image f(X) and its refiection —f(%)
1 mcciiiama alea Vo £ +) WSSOI | Y I o ¥ - SEEPE T « '+ N U ST, T 1Y
lu aSSUuince llldl JUX) Spans dib 0 W, HiIen n L a (.Ump'dbl CONvVEx sCt nicn
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R* [ d'u = r®} sunports R in d. Therefore r *dd' is a f(¥) coverine cvlinder. and

. } supp M in d. Therefore dd' is a f(X) covering cylinder, and

v =r?/j%K'dd'K). Equality holds if s=1 (op. cit); if s> 1 the matrix K'dd'K is

singular and the proof cf Corollary 5.3 shows that equality cannot hold if j is

sirictly isotone. Identification of possible support points is part of the followmg
reformulation of Theorem 5 and Condition (1) in Theorem 3.
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Theorem 7. Let £ € = be a design measure for which M(¢) lies in W(K), and let C
be the matrix (K'M(£)"K)™'. Then ¢ has M(E)-maximal j-information for K'B if
and only if there exist a g-inverse G of M(§) and a matrix D e NND(s) such that
J(C) ]°(D) = trace CD =1, and

f(x)’ 'KCDCK’Gf(x 1, forall xeX.

lf & is optimal then actually f(x) G'KCDCK'Gf(x)=1 for all support points x of
every design measure which has M(E)-maximal j-information for K'@; more
general, such points x must satisfy f(x)Nf(x)=1 whenever N is an optimal f(X)
covering cylinder.

For instance, Theorem 7 provides proof of the following statement in Wald
(1943, p. 136): No design measure is uniformly optimal for K'B in M(Z), unless
s =1, For assume that ¢ is uniformly optimal for K'B, and let x be one of its
support points. Then for every vector ¢ in the range of K the design measure £ is
optimal for ¢’B, by Theorem 1(d), and for all choices of M(£)” one has
c'M(&) f(x)f(x)M(&) ¢ =c'M(&) ¢, by Theorem 7 or Corollary 5.1; comparing
ranks in the resulting equation K'M(&) f(x)f(x)M(§) K =K'M(&) K proves
s = 1. Theorem 7 also leads to a rather strong statement concerning the weights of
optimal design measures. Its proof is based on the same idea as in Sibson «nd
Kenny (1975, p. 290), ramely, to expand the quadratic form in the inequalitie: of
Theorem 7 until the mairix M(§) appears in the middle.

Corollary 7.1 (Weights). Let Me M(E) be an information matrix which nas
M(E)-maximal j-information for K'B, and let C, D, G be as in Theorem 7.
Suppose M is obtained as the information matrix of a design measure which assigns
weights w; to | support points x; € X, and choose a root E of C, i.e., C=EE'. The
weight vector w=(w,,...,.w,) then solves the equation Aw =1, where 1,=
(1,....1)Y R and where the entries of the matrix A e NND(l) are given by

a,; = {g(x,Y(E'DE)?g(x,)¥. g(x)= E'K'Gf(x).
A single weight w, is bounded by 1/a;. and no weight is larger than A, (CD).
Procf. Theorem 7 gives g(x,YE'DEg(x,)=1. Expand E'DE into

(E'DE)'?’E'K'GMG’'KE(E'DE)"* and use M=%, wf(x)f(x) to obtain
Y. a,w = 1, for all h. This proves Aw = 1,. and a,w, = 1. But

1 ={g(x)E'DEg(x)¥ ={g(x.)(E'DE)"?g(x;)A .. (E'DE)'"*3}
= aii max(CD )‘
Hence a; >0, and w; = == 1/a; = A,,,(CD). Since A is the Hadamard :compocaent-

wise) square of a Gramian matrix, A is non-negative definite.

Notice that the bound A, (CD) is riot absurd, since A, (CD)=trace CD = 1.



The function g(x) defined in Corollary 7.1 plays a particular role in the function
space L,(#), for special cases this is discussed in Kiefer and Wolfowitz (1960,
p. 3¢4), Kiefer (1962, p. 597), Karlin and Studden (1966, Theorem 6.2).

Corollary 7.2 { L,(£)-version). Let £€ E be a design measure for which M(#) lies in
W(K), and let C be the matrix (K'M(&)"K)~'. Then ¢ has M(E)-maximal
j-information for K'B if ard only if there exist matrices TeR*** and F &R*™* such
that j(C) - j°%FF) = 1, and such that the transformed function g(x) = T'f(x) has the
properties: _

(a) the components of g form an orthonormal system with respect to &,

(b) the components of g are orthogonal to the system (I, — KK™)f,

(c) F'CK'Tg takes its values in the closed Euclidean unit bail of R°.
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Hence T'K is non-singular and satisfies CK'TT'K=1I. Define N=
TT'KCFF'CK'TT'. Then N is in R, K'NK = FF', and j(C) = 1/j° K'NK) proves
that both M{¢£) and N are optimal solutions of their respective problems.

Next we turn to particular choices of the information functional j.

5. Special criteria

Our investigations apply in particular to the family {j, | p e[, +1]} introduced
in Section 2. It is readily verified that j, vanishes outside PD(s) if and only if
pe[—x,0] or s =1, whence in these cases j,-optimai information matrices exist,
ordin . . i
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no j,-optimal design measure exists. In particular, the proposed proof of Theorem
1 in Whittle (1973, p. 125) is complete only if one assumes the existence of an
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optimal £* or closedness of the objective fuaction ¢. Precisely this closedness is
destroyed by Gribik and Kortanek (1977, p. 243) by setting the objective function
equal to c for all singular information matrices. Optimality will be chazacterized
usmg the followmg lemma.

L 2NN

*"'ma 3. The polar function of the information functional j, is sj,, provided
p,qe[ ®,+i] and p+q=pq. /f a matrix CePD(s) is given, then & matrix
D eNND(s) solves the equatiors j,(C) - (j,)°(D)=trace CD =1 if and only if
D =C""/trace C® in case p:>~-®, or A,{C)* Deconv S in case p=—». Here
conv S denotes the convex hull of all s X s matrices of the form zz' such that z is an
eigenvector of C corresponding to A,,;,(C) with Euclidean norm 1.

Proof. Since polar functions are closed it suffices to compute (j,)%Dj=
infeeppis) (G D)/j,,(C) only for D € PD(s). In case p¢{—x, G, +1} Theorem 5.10 in
Gaffke and Krafft (1979) gives (C, D)= j,(C)sj, (D). Hence

sia(D)=ink(C, D)/j, (C) =(D", D)/j,(D*") = sj,(D),

therefore sj, = (j,)°. Given C, the solution to j,(C)(j,)(D)=(C, D) then is D =

«C™4 and « is determined from a{C, C*?)= 1. In case p =0 the same argument
leads to the familiar arithmetic-geometric-mean inequality as in Karlin and
Studden (1966, p. 795). In case p =1 one certainly has (C, D)= (trace O)A,.,(D).
Hence

Si-AD)=inf(C, D)/j,(C) = inf s(zz'+¢el, D)/trace(zz' +€l,)
C

fzll=1.e>0

=s inf 2'Dz = sj_.(D).
llzli=1

Given C, the desired solution is D = al, with airace C =1, In case p =—» one
similarly has (C, D)= A.(C)(trace D). Hence s],(D)Eme(C D)/j_(C)=
(I, D)j(L) = sj,(D). Given C, let A;>--->A,>0 be its distinct eigenvalues,
with associated projectors E();). Write D as A, 'Y;.; o;zz], with R®-vectors z; of
Euclidean norm 1 and with coefficients a; Z0. Then

(C,D)= Z z AA; oz E(M\)z = Z o; = Apnin(C)(trace D),
i i

with equality if and only if for all i=1,...,r—1 and j=1,...,s one has
a;2/E(\)z; =0, ie., a;=0 or z lies in the range of E{A,). This completes the
proof.

With Lemma 3 the previous results simplify considerably and completely
resolve the two classical problems of j,-optimality of singular inform.ticz mat-
rices, and of optimality with respect to the non-differentiable E-, ie., j..-
criterion.
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Theorera 8 (j,-optimality). Let M € IR be an information matrix which lies in A(K).
If p>—o=, then M has M-maximal j,-information for K'B if and only if there exists
a g-inverse G of M such that

trace K'GAG'K(K'MK) " 'sStrace(K'M~K)™®, for all Ack.

If p=— and conv$ is the set defined in Lemma 3, then M has M-maximal
i_.-information for K'B if and only if there exist a g-inverse G of M and a matrix
E e conv such that

trace K'GAG'KE £ ), (X'M"K), for all AeI.

Proof. For finite p Theorem S5 and Lemma 3 give CDC=
(K'MK) * trace(K'M™K) ™, for p =— one obtains CDC = E/A «(K'M K).

When the set W of information matrices is induced by the set of all design
mosures, i.e.. M= M(E), Theorem 8 allows an obvious modification in order to
r ¢! Theorem 7. The resulting version is intimately related to the Theorem in
Si.cy (1978, p. 555) who proves the sufficiency part, and conjectures the
necessity part. Fedorov and Malyutov (1972, p. 286) seem to imply that G may be
chosen to be the Moore-Penrose inverse M™, Bandemec: et al. (1977, Section
5.6.3) claim that an arbitrary g-inverse M~ may replace G and orly the
inequalities of those x € X with f(x) e range M need be considered. Either of these
versions allows counterexamples, see Pukelsheim (1979, Examples 1, 2). Kiefer
(1974, Theorem 6) has a partial result on j -optimality covering the least
complicated situation: when the eigenvalue A, (K'M K) is simpie there is a
unique matrix E which satisfies the conditions of Theorem 8. Of course, Theorem
8 also includes the differentiable cases, such as formuia (4.19) of Kiefer (op. cit.),
or the original Equivalence Theorem of Kiefer and Wolfowitz (1960, p. 364).

Duality approaches to the optimal design problem are first mentioned in the
discussicn of Wynn (1972), a duality theorem on j,-optimality is presented by
Sibson (1974, p. 685). For s out of k parameters a dual problem different from
ours is chosen by Silvey and Titterington (1973, p. 25), their dual variable consists
of a pair (D, B)e PD(s)xR*** ¥ the following corollary extends their results
fop. cit.) 1o all pe[-=, +1].

Corollary 8.1 (s out of k parameters). For every pe[-=, +1] there exists a
s X(k =) matrix B such that for all information matrices M € M(Z) whose range
contains the leading s-dimensional coordinaie subspace the following holds: If
p > —x, then M has M(E)-maximal j,-information for (B,.....B,) if and only if
C=(L : OM L : 01)"! satisfies

fOxYL . BYC" (I : Blf(x)Strace ", for all xeX.

If p=—x and conv S is the set defined in Lemma 3, then M has M(E)-maximal
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j-w~information for (B,,...,B,) if and only if there exists a matrix Ecconv S
whicn satisfies

"f(x)’[l,': BIE[[, :BIfix)=A.i,(C), forall xeX.

In case of optimality i =[Mi: my] satisfies BMy; = ~M;, if p>--», or EBM,, =
""EMIZ if p=-—%,

Proof. Set K =[I, : 0], and choose an optimal solution N of the dual problem.
Then Nx= NK(K'NK)*K'N is optimal as well, see the proof of Lemma 2, and
suitable choices of D € NND(s) and B eR***~* giva Nx =[I, : B D[I, : B]. Thus
M is optimal if and only if j,(C) * (j,)(D) = trace CD = 1, by Theorems 3 and 4.
By Lemma 3, then, D = C? '/trace C? if p>—cx, and D e{1/A,,;o(C)} conv S if
p=-=, In case of optimality Condition (2) implies MNK = K'CD, and BM,, =
-M,, and EBM,, = —-EM,, , respectively.

A prominent application pertains to j,-, i.e., D- . 'mality for s out of k
parameters, see Kiefer (1961, Theorem 2). Karlin and $t'widen (1966, Theorem
6.1), Atwood (1969, Theorem 3.2). While the candicates ‘or the matrix B are
restricted to be soludons of BM,, = —M,, the multipicity - -ich s possible when
M is singular has caused a great many difficulties, see Atwacod (1969, p. 1579). In
the present context it is easy to see that the matrices G of Theorem 8, and B of
Corollary 8.1 are connected through (K'M"K) 'K'G =[1, : B}.

Since j, is strictly concave for p € ]-, +1[ multiplicity of j,-optimal informa-
tion matrices is discussed in Corollary 5.3. When p = —x the proof of Corollary
5.3, in conjunction with Lemma 3, still yields the necessary condition that
AG’'KE = KE must hold in order that both M and A be j_.-optimal. Notice that
Theorem 3 of Kiefer (1961) is close in spirit to our Corollary 5.3.

In Corollary 7 1 the matrix A determining the weights of a j,-optimal design
measure turns out to have entries, for p>—oo,

ay; = {f(x,Y G'KC' P2 K'Gf (x P trace C”;

the uniform bound A, (CD) beccines A, (CP?)/trace CP. This generalizes the
bound 1/s for j,-optimality for K'B, due to Atwood (1973, Theorem 4). For
p = — use the matrix E of Theorem 8 to obtain

i = {Amin(C) * f(x,) G'KE "K' Gf (x,)}",

and uniform bound A_,,(CD)=A. (E). Notice that A, (E)<1 unless rank E
=1, the latter necessarily being the case when A, (K'M"K) is a simple
eigenvalue.

The discussion clearly illustrates that in the j,-family the member j,, though
best knowr is least representative: It hides the conjugacy correspondence be-
tween p and q as in Lemma 3, and it obscures the fact that the bound Ape,(CD)
for optimal weights depsnd:, in general, on a predetermined information matrix.
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Another typical instance is encountered in Corollary 7.2, where for j, property (c)
simply requires g itself to take its values in the closed Euclidean unit ball of R*.

Up to this point no use has been made of the fact that the j,-criteria are
orthogonally invariant. However, if j,(C) is redefined to be the generalized mean
of order p of the positive eigenvalues of C we may replace (K'A"K)™! in
Definition 2 by (K’A"K)*, and thus dispense with the hypothesis that the k x5
matrix K must have full column rank s. While the set A(K) remains unchanged,
some provision is needed in order to circumvent negative powers of the now
possibly singular matrix K'M™K.

Corellary 8.2 (Arbitrary K). Suppose K is a ion-zero k X t matrix of rank s<t; let
MeM be an information matrix which lies in N(K), and let C be the matrix
(K'M™K)'. If p>—w, then M has 2R-maximal j,-information for K'B if and only if
there exists a g-inverse G of M such that

trace K'GAG'KC(K'M " K)'"°C=trace C(K'M"K)'™*, for all Ae.

If p=—= and conv S denotes the convex huil of all t Xt matrices of the form zz'
such that z lies in the range of K’ and is an eigenvector of X'M ™K corresponding to
Amad K'M™K) with Euclidean norm 1, then Theorem 8 holds verbatim.

Proof. Decompose K into HV' with some k X s matrix H and some t X s matrix V
which saiisfies V'V =I. Then A(X)=(H), and H'M H is positive definite
having the same positive eigenvalue:. and multiplicities as X’'M~K. Thus Theorem
8 holds with H replacing K. Since V(H'M H)'V'=(K'MK)", the assertion

follows.

The matrix C=(K'M K}" is often called the &-matrix associated with M, see
e.g., Kraft (1978, p. 200). For block design models. Kiefer (1958, Lemma 2.2;
1975, Proposition 1') investigates simultanecus optimality with respect to a large
class of criteria, the present situation allows the following analogue.

Corollary 8.3 (Simultaneous optimality). Suppose K is a non-zero k Xt matrix of
rank s, and p,>—=; let Me M have M-maximal j, -information for K'B. If
(K'M K" equals pK*K for some p>0, then M has M-maximal j,-information p
for K'B, jor all pe[—=, +1].

P-oef. The uiequailities in Corollary 8.2 simplify to trace K'GAG'K :£5/p, for
p = —% choose E = K “K/s.

Another application of rank deficient matrices K pertains to optimality criteria
which are linear in the sense of Fedorov (1672, Section 2.9). When a matrix
[.e NND(k) is fixed, then an informziion matrix M € M(Z) is said to be L-optimal
if it rinimizes trace M~L among all information matrices in M(£) whose range
contains the range of L. Thus M is L-optimal if aud only if M has M(5)-maximal
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j-1-information for K'B and KK’ = L. Hence there exists an L-optimal informa-
tion matrix, by Theorem 2, and M e M(2)NA(L) is L-optimal if and only if there
exists a g-inverse G of M which satisfies f(x)'G'LGf(x)<=trace ML, forall xe X,
by Corollary 8.2. This improves Theorem 8.2 of Karlin and Studden (1966), and
Theorem 2.9.2 of Fedorov (1972). If L is replaced by KK’ then j_,-optimality for
K'B is characterized; since R = G'K solves MR = K this rederives Theorem 4.3.1
of Fellman (1974). Moreover, Theorem 7.1(ii) of Karlin and Studden (1966} may
be extended and connected with Theorem 4.3.2 of Fellman (1974) in the
following way. Recall that an information matrix M e M is called admissible if no
other information matrix A € M satisfies A > M.

Corollary 84 (Admissibility). Let MeI be an information matrix. If M is
admissible, then (i) M has M-maximal j_.-information for K'B, whenever KK' =
M, (ii) there exists a matrix N € I° ANND(k) such that trace MN = 1, and (iii) M
has M-maximal j_,-information for K'B and M is L-optimal, whenever L. = KK' =
MNM.

Proof. Let A €M have M-maximal j_.-information for K'B with KK’ = M, and
let N be an optimal solution of the dual problem. Then Theorem 4 and Lemma 3
yield Apa(K'AK)=1/j_.oJ(A)=sj(K'NK)=trace MN=1. This entails
K'A"KXI, and K*"K'A"KK*< M"*. Hence
ML (K"K'A"KK"Y"=K(K'A"K)"K'K A,

the first inequality follows from Theorem 3.1 in Milliken and Akdeniz (1977), the
second equality is immediate, and the third inequality is the second step in the
proof of Theorem 3, with M replaced by A, and N replaced by uu’. Since
admissibility forces M and A to coincide M is the unique j_.-optimal infor mation

matrix for K'B, and trace MN = 1. Assertion (iii) follows from j_,oJ(M)=s=
1/{sj,,2(K'NK)} and Theorem 4, since (K'NK)'?>=K'M"K.

Notice that the j,-family is related to the j, -family, aisc introduced in Section
2, through sj,=j;, and j_.=infy,-, j,,~ The polar functions {j )* furnish yet
another class of information functionals. For L ¢ NND(s), L# 0, let A(L) denote
the set of those matrices D e NND(s) whose range contains the range of L.

Lemma 4. The polar function of the information functional j, is given by
(i) (D) = YA ma DL if DeW(L), (j.)°(D)=0 otherwise. If a matrix CeFD(s)
is given, then the unique mawix DeNND(s) which solves j (O)- (jL)(D)=
trace CD =1 is D = L/trace CL.

Proof. Let r be the rank of L, and tile choose a matrix KeR*™" such that
L =KK'. In case D eUA(L) the proofs of Theorem 3 and Lemma 3 give (C, D)=
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{(K'D"K)" ', K'CK)Z A ,i{(K'D"K)" '}jL(C). Hence
Aminl(K'D™K)™'} éirclf(C, D)/j.(C)

= inf (D'K(K'D"K)"'zz'(K'D"K)"'K'D*

lizll=1.e3-0
+ oI, D)Y(1+¢€ trace KK')

_S_‘ ilrllf 2'(K'D"K) 'z = A {(K'D"K)™ 1,
lzl=1

and (j.)%(D) = 1/Ax(DL).
In case D£WU(L) choose a vector z in the nullspace of 2 which is not in the
nullspace of L, then

(i) (D) = inf( + g22', D)KL, + 22", L) =0.

Given L e PD(s) and D e A(L), equality holds in {C, D)={(K'D"K)™!, K'CK) if
and only if 2 =KEK' for some matrix E<PD(r); for Condition (2) entails
D =K(K'D K} 'K', while the converse follows upon choosing for KEK' the
g-inverse K{(K'K)'E"YK'K)'K'. Since (E, K'CK)=A;.(E)(trace K'CK)
necessitates E = al,, the proof is complete.

The final section will illustrate some of the results above.

6. Examples

6.1. Trigonometric design

One of the smoothest examples is provided by the trigonometric regression
function f(x)=(1, cosx,..., coskx, sinx,...,sinkx) on the ‘unit circle’ X =
[0, 27, see Fedorov (1972, Sectic:. 2.4), Kraft (1978, Section 19(c)). For
every sample size n>2k+1 every design measure which assigns weight 1/n
to n equidistant points on the unit circle has (2k+1)x(2k+1) information
matrix M =diag(1,3,...,3), with M(E)-maximal j,-information for g. Moreover,
any such design is j,-optimal for B, for all pe[—x, +1], by Corollary 8.1. Hence
for simultareous optimality the sufficient condition of Corollary 8.3 is not, in
general, necessary. It is necessary, though, in order that the optimal value
function v(p} be constant; in the present example v varies from v(-) =3} to
v(1)=3+1/(4k +2). Also notice that every design measure with non-singular
information matrix is j,-optimal for B8, demonstrating the particuiarly poor
performance of j,, and that many choices for E ure feasible to verify j_.-
optimality in Theorem 8 or Corollary 8.1.
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6.2. Quadratic design

‘ 'i(’)n;:— of the simplest examples is provided by the quadratic regression function
f(x)=(1, x, x*)’ over the symmetric interval £=[-1, +1]. Let £, be the design
measure £, (0)=a, £ (-1 =£.(+1)=(1-a)/2, with information matrix

410 1-
IVL,:( 0 1-a Oa),
 \1l-¢ 0 1-a/

1/c: 0 ~1/a
;‘\/I;"-—( 0 1(-a) 0 )
~1/a 0 1{a(1-a)}

6.2.1 .

There exists no j,-optimal design measure for B. For it follows from the
equation {3j_.(I/3)} ' =1=1lim, ., j:(M,) that I3/3 is an optimal solution of the
dual problem. The points +1, determincd from Condition (1), cannot support a
design measure which has a non-singular information matrix.

6.2.2

The unique j_.-optimal design measure for g is £/5, and 1/V5 =lic|l, c =(-3, 0,
2y, is an in-ball radius of the regression ball R. For one has {=A_ .. (Mss) =
v(—©)=r?, where r*>=r*/(j_,)°(dd’) is the bound derived before Theorem 7. On
the other hand r is connected to the regression norm p (Pukelsheim 1979,
equation (2.3), Theorem 1) through r*=||c|P/{p(c)}’ =|lc|*/c'Nc == 1, when the f(¥)
covering cylinder N is chosen to be (-1,0,2)(—1,0,2). Hence r=1/{/5, and
p(c) =1, so that ¢ 's a boundary point of R, and M;s is j_.-optimal for B (Kiefer
1974, p. 868). Furtherim..e, My;s is optimal for ¢'@, since ¢'M3sc = 1={p(c)}*,
and ¢ is an eigervector of Mj;s corresponding to the eigenvalue r*=1i. For
J-~~optimality Corcllary 8.2 with E = 5cc’ determines —1, 0, +1 as only possible
points of support; "orcllary 5.3, then, proves uniqueness of M ;.

6.2.3

The unigue j,-optimal de<ign measure for {B,, 3,)' is &5, by Theorem 8 and
Corollary 5.3. In fact, this design is j,-optimal for (8,, 8,)', for all pe[—, +1], by
Corollary 8.3.

6.2.4

If pe]—o, +1{ th>n the unique j,-optimal design measure for (8,, B;) is &, with
« being defined in.plicitly by a'™®+2a =1. For when Theorem 8 is applied to
any design &, one ¢btains the condition on @, and the possible suppoit points —1,
0, +1; again Corollary 5.3 proves uniqueness. The weight function a(p) is strictly
decreasing, with derivative a'(p) = (log a)a’?{a™"(1-p)+2}<0. For the five
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arguments ‘—oc’, —1, 0, 4, ‘+1° the values of a(p) are 3, vV2—1, } (Kiefer 1961,
p.312), L, 0, while the respective optimal j,-information v(p) is i, 2/(3+y8),
2/J27, &, 1. Note that § also is the lower bound for v(—») derived before
Theorem 7. In fact, the unique j_.-optimal design measure for (B, B3)' is &,
with j_.-information 3.

6.2.5
The j,-optimal value for (B,, B5)' is 1, but there exists no j;-optimal design
measure for (B., 85)'. For the f(X) covering cylinder

{1 0o =1
N={| 0o 1 6
-1 0 1

satisfies {2j_(K'NK)}™' =3 =lim,¢ j;°J(M,), hence N is an optimal solution of
the dual problem and determines the suppoit points —1,0, +1. If a measure ¢
with this support is optimal then it must have inforination matrix M,, by
comparing the first row of either side in Condition (2), although M, does not lie in
A(K).

6.3. A contraction example

Consider a projection MG where G is a contracting g-inverse of M e M(E). If
k =2 then MG is a contraction of the regression ball $R; in this case there is no
need to go through the construction of Lemma 2, but G may be visualized from
the geometry of R, see Pukelsheim (1979). If k >2 then MG need not be a
contraction of M: Let R be the regression ball generated by the identity function

BE0 660

Then the cross-section of R with the (x, y)-plane is the unit square, with vertices
on the coordinate axes. Therefore the measure which assigns weight 3 to the last
two levels in X is optimal for iB8,+318,, by Theorem 1 in Pukelsheim (1979).
However, no projection onto the (x, y)-piane can be a contra:tion of R since two
of the edges of R have been twisted out of their ‘natural’ vertical positions.
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