J. -H. Eschenburg

WILLMORE SURFACES AND MOEBIUS GEOMETRY

The following notes grew out of discussions between J. Eschenburg, U.Pinkall and K.Voss about R.Bryants work on Willmore surfaces [Br]. In particular, the computations of ch. 3 are due to Voss. The main theorem of Bryant says that Willmore spheres are Moebius transforms of certain minimal surfaces in \mathbb{R}^{3}. The proof has two sources: the theory of conformal area in Moebius geometry developed by Thomsen and Blaschke in the $20^{\prime \prime} s$, and the study of minimal 2-spheres in spaces of constant curvature by Calabi, Chern and others. Our aim is to exhibit these sources more clearly than in the original paper which makes the proof more transparent. We wish to thank G.Metzger who helped us understanding the Moebius geometry.

Contents.

1. The Willmore functional
2. Moebius geometry
3. The conformal Gauß map
4. First variation of area of conformal maps
5. Minimal surfaces in quadrics
6. Willmore spheres and tori

Appendix

1. The Willmore Functional

Throughout this paper, let M be a surface and $x: M \rightarrow \mathbb{R}^{\circ}$ an immersion. T.Willmore [W] proposed to consider the functional

$$
W(x)=\int_{M}(H=K) d A=1 / 4 \int_{M}\left(k_{a}-k_{x}\right) d A
$$

where K and H are the $G a u ß$ and the mean curvature, $k a, k=$ the principal curvatures and $d A$ the area element of the induced metric on M. For compact surfaces, W is a measure for the total mean curvature since the Gauß-Bonnet integral sKdA does not depend on x

It is a remarkable fact (cf. Appendix) that the functional W is invariant under conformal diffeomorphisms of the target space. In fact, by Liouville's theorem, the conformal diffeomorphisms of open subsets of \mathbb{R}^{∞} do also preserve the set of spheres and planes of $\mathbb{R}^{i=3}$ and form the group Moeb(3) of the Moebius transformations of $\mathbb{R}^{\infty} U\{\infty\}$ (cf. [Sp]). For any dimension n, the group Moeb(n) is generated by isometries, homotheties and some inversion (reflection at some sphere).

Lemma 1. Let $S_{\mu}, S_{\text {w }} \subset \mathbb{R}^{m}$ be (n-1)-spheres which touch each other at some point p. i.e. they have a common normal vector n at p. Let $g \in \operatorname{Moeb}(n)$. Then the mean curvatures k of $S_{\text {it }}$ with respect to n and $k:$ of $g\left(S_{i t}\right)$ with respect to $d g_{p}(n)$ satisfy

$$
\lambda(p) \cdot\left|k_{a}^{\prime}-k_{: 2}{ }^{\prime}\right|=\left|k_{a}-k_{a}\right|
$$

where λ is the metric delatation factor of g.

Proof. The statement is true for isometries and homotheties. We have to show it for one inversion. But there exists exactly one sphere S touching S_{1} and S at p such that reflection at S interchanges S_{1} and S_{5}. Since $p \in S$, we have $\lambda(p)=1$ for this inversion and so the formula holds trivially.

Remark. This sphere S is called the central sphere of S_{1} and S_{2}. Its mean curvature with respect to n is $k=1 / 2\left(k_{1}+k_{z}\right)$.

Proposition 1. For any $g \in \operatorname{Moeb}(3)$ we have

$$
W(g \circ x)=W(x) .
$$

Proof. For any $p \in M$, consider the bunch of spheres $S(k)$ having first order contact with $x(M)$ at $x(p)$, where the parameter k denotes the mean curvature of the corresponding sphere $S(k)$. In particular. $S(0)$ is the tangent plane at $x(p)$. For large $|k|$, the sphere $S(k)$ lies on one side of $x(U)$ for some neighborhood U of p. The supremum and the infimum of these k-values are the principal curvatures k_{i} and $k=$ of the surface x at p. This characterization of the principal curvatures shows that the Moebius transformation g maps the corresponding spheres $S\left(k_{1}\right)$ and $S\left(k_{2}\right)$, the so called principal curvature spheres of x at p, onto the principal curvature spheres of gox at p. Thus the proposition follows from Lemma 1.

Since the conformal geometry of $\mathbb{P} \cup\{\infty\}$ is mapped to that Of the 3-sphere S^{a} by any stereographic projection ϕ : \mathbb{R}^{a}-> S, we also consider the analogue functional for immersions x^{\prime} :
$M \rightarrow S^{\oplus}$, namely

$$
W^{\prime}\left(x^{\prime}\right)=Y_{M} \int_{M}\left(k 1^{\prime}-k z^{\prime}\right)=d A^{\prime}=\int_{M}\left(1+H^{\prime}=-K^{\prime}\right) d A^{\prime}
$$

where the quantities with ' always refer to the immersion x '. The euclidean and the spherical curvatures are related as follows:

Lemma 2: Let $S^{\prime} \subset S^{n}$ be some ($n-1$)-sphere with spherical mean curvature k^{\prime}. Then k^{\prime} is the euclidean mean curvature of the sphere S^{\wedge} in \mathbb{R}^{m+1} which intersects S^{m} orthogonally along S^{\prime}.

This can be seen without computation in the case $n=2$ by looking at the tangent cone C which touches S^{m} along S^{\prime}.

C

To see the relation between W and W^{\prime}, we observe that a stereographic projection $\phi: \mathbb{R}^{9} \rightarrow S^{3}$ with $\phi(\infty)=N \in S^{\cdots}$ is the restriction to $\mathbb{R}^{e} \subset \mathbb{R}^{4}$ of the inversion Φ at the 3-sphere $S_{o} \subset \mathbb{R}^{n 4}$ centered at, N and intersecting S^{w} along $S^{w} \cap \mathbb{R}^{w}$.

Fig. 2

As above, we see that ϕ maps the principal curvature spheres $S\left(k_{\text {il }}\right)$ of some immersion $x: M \rightarrow \mathbb{R}$ to the principal curvature spheres $S^{\prime}\left(k x^{\prime}\right)$ of $x^{\prime}=\phi 0 x$. On the other hand. if we enlarge the 2-spheres $S\left(k_{i 1}\right) \subset \mathbb{R}^{a} \subset \mathbb{R}^{+4}$ to 3 -spheres with the same center and radius, than Φ maps these onto those 3 -spheres which intersect $S^{\prime=}$ orthogonally along $S^{\prime}\left(k_{\mu^{\prime}}^{\prime}\right)$. Thus from Lemma 2 and Lemma 1 (for $n=4$) we get

Proposition 2. For any stereographic projection ϕ : $\mathbb{R}^{a} \rightarrow \quad S^{a}$ and any immersion $x: M \rightarrow \mathbb{R}^{3}$ we have

$$
W(x)=W^{\prime}(\phi \circ x)
$$

Example. Consider the immersion $x^{1}: S^{1} \times S^{1} \rightarrow S^{3} \subset \mathbb{C}$

$$
x^{\prime}(\sigma, \tau)=(c \cdot \sigma, s \cdot \tau)
$$

where $c=\cos \alpha, \quad s=\sin \alpha$ for some constant $\alpha \in(0, \pi / 2)$

This arises as the enveloping surface of all 2-spheres in 5 with spherical radius α and center on the great circle $S_{1}{ }^{1}=S^{9} \cap(\mathbb{C} \times 0)$. These are orthogonal intersections of S^{a} with 3 -spheres of radius $\tan \alpha$. Likewise. x^{\prime} is the enveloping surface of the spheres of spherical radius $\pi / 2-\alpha$ with center on $S^{1}=S \cap(0 \times \mathbb{C})$ which are orthogonal intersections of S^{∞} with 3 -spheres of radius $\cot \alpha$. Since the orientations of the latter spheres are opposite, we get

$$
\begin{aligned}
4 W^{\prime}\left(x^{\prime}\right) & =(\cot \alpha+\tan \alpha)=(2 \pi \cos \alpha)(2 \pi \sin \alpha) \\
& =2 \pi=/(\sin 2 \alpha) \geq 2 \pi=
\end{aligned}
$$

with equality exactly for $\alpha=\pi / 4$ (Clifford torus). These
surfaces correspond to the tori of revolution under a stereographic projection ϕ with $\phi(\infty) \in S z^{1}$. Thus for tori of revolution we get $W \geq 2 \pi^{m}$ with equality iff the ratio between large and small radius is $\sqrt{ } 2$ which corresponds to the Clifford torus.

Fig. 4

This was observed by Willmore [W] and lead him to the conjecture that $W \geq 2 \pi^{w}$ for any torus in \mathbb{R}^{∞}. The conjecture has been proved by Li and Yau [LY] for some conformal classes. L. Simon [S] showed that there exists a smooth immersion of the torus which minimizes the functional W, but the Willmore conjecture is still open. More generally, an immersion $x: M \rightarrow \mathbb{R}^{e}$ is called a Willmore immersion if it is a critical point of W, i.e. if the first variation vanishes at x. This will be computed in ch. 3 .

2. Oriented Moebius Geometry

The preceding paragraph showed that the geometry of oriented spheres played an important role for the Willmore functional. To any unoriented 2 -sphere $S^{\prime} \subset S^{\ni}$ we assign a point $P^{\prime}\left(S^{\prime}\right)$ in the complement of a disk in projective 4-space $\mathbb{R P}^{* *}$, namely the
center of the 3-sphere S^{\wedge} which intersects S orthogonally along S^{\prime} or in other words the vertex of the cone C which is tangent to S^{∞} along S^{\prime} (see Fig.1). If S^{\prime} is a great sphere, then S^{\wedge} becomes a $3-p l a n e$ and C a cylinder, so the center is the point at ∞ in the direction of the normal vector of S^{\wedge}. If we start with the sphere

$$
S_{r}(m)=\left\{x \in \mathbb{R}^{\equiv} ;\|x-m\|=r\right\}
$$

in \mathbb{R}° and enlarge it to a 3 -sphere in \mathbb{R}^{*+4} with the same center and radius, then $P\left(\phi\left(S_{r}(m)\right)\right.$ is the center of the image of that 3-sphere under the inversion Φ of \mathbb{R}^{44} which continues the stereographic projection $\phi: \mathbb{R}^{=} \rightarrow S^{\oplus}$ (cf. ch. \quad). From this we get

$$
\begin{aligned}
P\left(\phi\left(S_{r}(m)\right)\right. & =(2 m,\|m\|=-r=-1) /(\|m\|=-r=+1) \\
& =[m, 1 / 2(\|m\|=-r=-1), 1 / 2(\|m\|=-r=+1)]
\end{aligned}
$$

Where we consider $\mathbb{R}^{n 7}$ as the subset $\left\{[y, 1] ; y \in \mathbb{R}^{n 7}\right\}$ of $\mathbb{R P}^{44}$. Introducing the Lorentzian scalar product on \mathbb{R}^{m}, namely
we have $S^{: a}=\left\{[X] \in \mathbb{R}^{m i x}:\langle X, X\rangle=0\right\}$ and $P\left(\phi\left(S_{r}(m)\right)\right)$ is always a homogeneous vector $[Y]$ with $\langle Y, Y\rangle\rangle 0$. Thus we may normalize the vector Y so that $\langle Y, Y\rangle=1$. In this way, out of the line [Y] we choose two 5-vectors Y and $-Y$ which now correspond to the two orientations of $S_{r}(m)$. We agree that negative values of r correspond to the orientation with respect to the outer normal so that $k=1 / r$ is the mean curvature with respect to the chosen normal. Putting $Y=P+\left(\phi S_{r}(m)\right)$ we get

$$
P_{+}\left(\phi S_{r}(m)\right)=r \cdots(m, 1 / 2(\|m\|=-1), 1 / 2(\|m\|=-r=1)),
$$

and thus we have represented the spheres in \mathbb{R}^{3} by points in the quadric $Q^{* *}=\left\{Y \in \mathbb{R}^{* *}:\langle Y, Y\rangle=1\right\}$ which is itself a Lorentzian manifold of constant curvature. If we let $r \rightarrow 0$, we have to renormalize by multiplying again with r, and thus we get

$$
X=\lim _{r \rightarrow 0} r \cdot P_{+}\left(\phi S_{1 .}(x)\right)=(x, \quad 1 / 2(\|x\|=1), \quad 1 / 2(\|x\|=1)+1)
$$

as the representative of the point $x \in \mathbb{R}^{3}$. In fact, the mapping $\mathrm{X} \rightarrow \mathrm{X}$ is an isometry onto $L \cap\left\{\mathrm{X}_{\mathrm{m}} \mathrm{L}-\mathrm{X}_{\mathrm{m}}=1\right\}$ where $\mathrm{L}=\{\mathrm{X}$; $\langle X, X\rangle=0\}$ is the light cone in \mathbb{R}^{m}. The following table shows how objects in \mathbb{P}^{∞} are represented in \mathbb{P}^{∞} :

Here, the third line follows from the second by passing to $r \quad \rightarrow$ ∞. The fifth line follows since by definition, P+(申(S)) belongs to the tangent space of L at X. The group $P O(4,1)$ consists of those projective transformations of $\mathbb{R} P^{* 4}$ which preserve the sphere $S^{a}=\{[X] ;\langle X, X\rangle=0\}$. So their restrictions to S are Moebius transformations since the 2 -spheres (which are the intersections of S with $3-p l a n e s)$ are mapped onto $2-s p h e r e s$. Moreover, the Moebius group on S is generated by all reflections at

2-spheres $S \cap H$ where H is any hyperplane in $\mathbb{R P *}$. Such inversion arises from the Lorentz reflection at the preimage of H in $\mathbb{R}^{m=}$ which shows the last line.

A classical problem in Moebius geometry (cf. [Bo]) is the study of 2 -parameter families of spheres (sphere comgruence). This is a smooth mapping $S: M \rightarrow\left\{\right.$ spheres in $\left.\mathbb{R}^{\text {a }}\right\}$ where M is some 2-dimensional manifold. It is represented by a smooth mapping $Y: M \rightarrow Q^{* 4}, Y(m)=P(\phi(S(m))$. A smooth map $X: M \rightarrow \mathbb{P} \quad$ is called enveloping surface of the sphere congruence S if
(a) $X(m) \in S(m)$.
(b)

$$
d x_{m}\left(T_{m} M\right) \subset T_{\infty<m>} S(m)
$$

for all $m \in M$, Passing to the mapping $X: M \rightarrow L$ which corresponds to $x,(a)$ and (b) are translated into

$$
\langle X(m), Y(m)\rangle=0, \quad\left\langle d X_{m}(v), Y(m)\right\rangle=0
$$

for any $m \in M, V \in T_{m} M$. So we may characterize the enveloping surface X of a sphere congruence Y by
(E)
$\langle X, Y\rangle=0,\langle X, d Y\rangle=0$
where we have used that $d\langle X, Y\rangle=0$. In other words, $X(m)$ is a null vector in Trem: $Q^{* 4}$ which is normal to X.

3. The conformal Gauß map

Now let $x: M \rightarrow \mathbb{R}$ be an immersion with unit normal field
$n: M \rightarrow S$ and mean curvature H. The central sphere of x at
$m \in M$ is the sphere $S(m)$ which is tangent to x at $x(m)$ and
has mean curvature $k=H(m)$. By the remark following Lemma 1, this is the central sphere of the principal curvature spheres at m. i.e. inversion at $S(m)$ maps one principal curvature sphere onto the other. This defines a sphere congruence which is Moebiusinvariantly connected with the immersion x (cf. ch.1), called the conformal Gauß map of x. Clearly, x is an enveloping surface of S.

As above, let $Y(m)=P(\phi(S(m))$ be the representative in Q*. . By the table in ch.2, we have

$$
\begin{equation*}
Y=H \cdot X+T \tag{1}
\end{equation*}
$$

where
(2)

$$
x=\left(x, 1 / 2(\langle x, x\rangle-1), y_{2}(\langle x, x\rangle+1)\right)
$$

is the representative of x in L and

$$
\begin{equation*}
T=(n,\langle x, n\rangle,\langle x, n\rangle) \tag{3}
\end{equation*}
$$

the representation of the tangent plane.

Proposition 1.

$$
\langle d y, d y\rangle=\left(H^{2}-K\right)\langle d x, d x\rangle
$$

Proof. We have $\langle X, X\rangle=0,\langle T, T\rangle=1,\langle X, T\rangle=0$ and therefore $\langle d X, X\rangle=\langle d T, T\rangle=0,\langle d T, X\rangle=-\langle d X, T\rangle$. Moreover,

$$
\begin{align*}
& d x=(d x,\langle x, d x\rangle,\langle x, d x\rangle), \tag{4}\\
& d T=(d n,\langle x, d n\rangle,\langle x, d n\rangle),
\end{align*}
$$

from which we get $\langle d x, T\rangle=\langle d x, n\rangle=0$ and

$$
\langle d x, d x\rangle=\langle d x, d x\rangle=I,
$$

$$
\langle d X, d T\rangle=\langle d x, d n\rangle=-I I,
$$

$$
\langle\mathrm{dT}, \mathrm{dT}\rangle=\langle\mathrm{dn}, \mathrm{~d} \mathrm{n}\rangle=\mathrm{III},
$$

where I, II, III denote the classical fundamental forms. Thus

$$
\langle d Y, d Y\rangle=H^{2} \cdot I-2 H \cdot I I+I I I=\left(H^{2}-K\right) \cdot I
$$

where we used the relation III $=2 \mathrm{H}$.II $-\mathrm{K} . \mathrm{I}$.

Thus, Y is a conformal map with respect to the conformal structure on M induced by x, and the Willmore functional is the area of Y,

$$
W(x)=\operatorname{Area}(Y) .
$$

In particular, x is a Willmore immersion if Y is a minimal surface. To see also the converse, we need to compute the mean curvature vector of Y. Let Δ be the Laplace operator with respect to the metric induced by x on M.

Proposition 2.

$$
\Delta Y+2\left(H^{2}-K\right) Y=\left(\Delta H+2\left(H^{2}-K\right) H\right) X
$$

Lemma :

$$
\begin{aligned}
& \Delta \mathrm{x}=2 \mathrm{H} \cdot \mathrm{n}, \\
& \Delta \mathrm{n}=-2 \mathrm{dx}(\nabla \mathrm{H})-2\left(2 \mathrm{H}^{2}-\mathrm{K}\right) \mathrm{n}, \\
& \Delta \rho=2(1+\mathrm{H} \cdot \sigma) . \\
& \Delta \sigma=-2\langle\nabla \mathrm{H}, \nabla \rho\rangle-\left(4 \mathrm{H}^{2}-2 \mathrm{~K}\right) \sigma-2 \mathrm{H},
\end{aligned}
$$

where $\rho=\langle x, x\rangle / 2, \sigma=\langle x, n\rangle$.

Proof of the lemma. Let e_{1}, e_{2} be a local orthonormal basis on M. Let $\partial_{1}=\partial_{e_{1}}$ and $D_{A}=D_{e_{1}}=\left(\partial_{1}\right)^{T}$. where D is the LeviCivita connection on M. Let us agree that we sum over repeated indices. Then

$$
\Delta x=\partial_{1} \partial_{1} x-d x\left(D_{1} e_{1}\right)=\left\langle\partial_{1} d x\left(e_{1}\right), n\right\rangle n=I I_{1,1} \cdot n=2 H \cdot n
$$

$$
\begin{aligned}
\Delta n=\partial_{11} \partial_{11} n- & d n\left(D_{1} e_{1}\right)=D_{1}(d n)\left(e_{1}\right)+\left\langle\partial_{1} \partial_{11} n, n\right\rangle n \\
& =-D_{11}(I I)_{1 \mu} \cdot d x\left(e_{\mu}\right)-\left(I I_{1 \mu}\right) \cdot n \\
& =-D_{\mu}(I I)_{11} \cdot d x\left(e_{\mu}\right)-\left(k_{11}=k_{2}^{2}\right) n \\
& =-2 \partial_{\mu} H \cdot d x\left(e_{j}\right)-\left(4 H^{2}-2 K\right) n \\
& =-2 d x(\nabla H)-\left(4 H^{2}-2 K\right) n .
\end{aligned}
$$

Now for any two functions $u, v: M \rightarrow \mathbb{R}^{\equiv}$ we have

$$
\Delta\langle u, v\rangle=\langle u, \Delta v\rangle+\langle v, \Delta u\rangle+2 \operatorname{trace}\langle d u, d v\rangle .
$$

hence

$$
\begin{aligned}
& \Delta \rho=\langle\mathrm{x}, \Delta \mathrm{x}\rangle+\operatorname{trace}\langle\mathrm{dx}, \mathrm{dx}\rangle=2 \mathrm{H}\langle\mathrm{x}, \mathrm{n}\rangle+2=2(1+\mathrm{H} \sigma), \\
& \Delta \sigma=\langle\mathrm{x}, \Delta \mathrm{n}\rangle+\langle\mathrm{n}, \Delta \mathrm{x}\rangle+2 \operatorname{trace}\langle\mathrm{dx}, \mathrm{dn}\rangle \\
& \\
& =-2\langle\mathrm{x}, \mathrm{dx}(\nabla \mathrm{H})\rangle-(4 \mathrm{H}=-2 \mathrm{~K})\langle\mathrm{x}, \mathrm{n}\rangle+2 \mathrm{H}-4 \mathrm{H} \\
& \\
& =-2 d \rho(\nabla \mathrm{H})-(4 \mathrm{H}=-2 \mathrm{~K}) \sigma-2 \mathrm{H} .
\end{aligned}
$$

Proof of Proposition 2. We have by (1)

$$
\Delta Y=\Delta(H \cdot X+T)=(\Delta H) X+H \cdot \Delta X+2 d X(\nabla H)+\Delta T
$$

and by 3.3 and (2),(3),

$$
\begin{aligned}
& \Delta X=\Delta(X, \rho, \rho)=2 H \cdot T+2 \cdot(0,1,1), \\
& \Delta T=\Delta(n, \sigma, \sigma)=-(4 H-2 K) \cdot T-2 H \cdot(0,1,1)-2 d X(\nabla H),
\end{aligned}
$$

hence

$$
\Delta Y=(\Delta H) X-2(H=K) \cdot T
$$

which gives the desired equality since $T=Y-H \cdot X$.

Now let M be a surface (which may be non-compact) and x : $M \rightarrow \mathbb{R}^{m}$ an immersion. We call x a Willmore immersion if W(x|M') is stationary for any relatively compact open subset $M^{\prime \prime}$ c M i.e. for any smooth variation x^{t} of x with $x^{t}=x$ outside M^{\prime} we have $\delta W\left(x \mid M^{\prime}\right):=(d / d t) W\left(x^{t} \mid M^{\prime}\right)=0$.

Proposition 3. The following statements are equivalent:
(i) x is a willmore immersion.
(ii) Y is a conformal harmonic map,
(iii) $\quad \Delta H+2\left(H^{2}-K\right) H=0$.

Proof. By Prop. $1, Y: M \rightarrow Q^{4 t} \subset \mathbb{R}^{*}$ is always a conformal map. By the first variation formula (see next chapter, Equation (V)), for any variation of Y in $Q^{* 4}$ whose variation vector δY has compact support we have

$$
\delta(\operatorname{Area}(Y))=-\int_{M}\left\langle(\Delta Y)^{T G}, \delta Y\right\rangle d A .
$$

where Ta denotes the projection onto the tangent space of Q. By Prop. 2.
(a)

$$
(\Delta Y)^{\mathrm{TG}}=\mathrm{h} \cdot \mathrm{X}
$$

with $\quad h=\Delta H+2\left(H^{=}-K\right) H \quad$ (recall $\langle Y, X\rangle=0$). Moreover, $\delta Y=$ $(\delta H) \cdot X+H \cdot \delta X+\delta T$, and $\langle X, X\rangle=0,\langle X, \delta X\rangle=0,-\langle X, \delta T\rangle=$ $\langle\delta X, T\rangle=\langle\delta x, n\rangle=: f$. Hence
(b)

$$
\delta(\text { Area }(Y))=\int_{M} h \cdot f d A
$$

Now (i) says that $\delta(\operatorname{Area}(Y))=0$ for all compactly supported variation fields δx along x. Hence the integral in (b) vanishes for all f with compact support which is possible only if $h \equiv 0$. So we get (iii). But (iii) implies ($\Delta Y)^{\mathrm{Ta}}=0$, by (a) , so we get (ii) which trivially implies (i).

Examples. (a) Let $x^{\prime}: M \rightarrow S^{3}$ be a minimal immersion with unit normal vector $n^{\prime}: M \rightarrow S^{3}$. Then the central sphere $S(p)$ for $p \in M$ is the intersection of S with the hyperplane $n^{\prime}(p)^{+1} \subset \mathbb{R}^{* 4}$. Hence $P(S(p))$ is the point at ∞ in the direction
$n^{\prime}(p)$. namely $\left[n^{\prime}(p), 0\right]$. Thus $Y=\left(n^{\prime}, 0\right)$. Since n^{\prime} is also a minimal immersion in S^{a} (e.g. see [ETi]), Y is a minimal surface in the totally geodesic hypersurface $S^{s}=Q \cap \mathbb{R}^{n 4}$ in Q^{+4}. Thus X^{\prime} is a Willmore immersion.
(b) By Proposition 3(ii1), any minimal immersion $x: M \rightarrow \mathbb{R}^{\mathfrak{a}}$ is a Willmore immersion, since $H \equiv 0$. In fact, we have $Y=T$, and this has values in the totally geodesic hypersurface $Q \cap\left\{Y_{4}=Y_{m}\right\}$ with degenerate metric in Q.

4. First variation of area for conformal maps

Let M be a surface with conformal structure, <, \quad, scalar product (possibly indefinite) on \mathbb{R}^{n} and $Y: M \rightarrow \mathbb{R}^{r r}$ a smooth mapping. For any relatively compact open subset $M^{\prime} \subset M$ with conformal coordinate $\left(u_{1}, u_{m}\right): M^{\prime} \rightarrow \mathbb{R}^{2}$ we put

$$
\operatorname{Area}\left(Y^{\prime} \mid M^{\prime}\right)=\int_{M^{\prime}}\left\|Y_{A} \wedge Y=\right\| d=u
$$

where $d=u=d u_{1} d u_{x}, \quad Y_{1}=\partial Y / \partial u_{1}$ and

$$
\|V \wedge W\|=|\langle V \wedge W, V \wedge W\rangle| 1 /=\mid\langle V, V\rangle\langle W, W\rangle-\langle v, W\rangle=1 / 1 /
$$

for any $V, W \in \mathbb{R}^{n}$. In particular, if Y is conformal, i.e. if

$$
\left\langle Y_{1}, Y_{, j}\right\rangle=\mathrm{E} \cdot \delta_{1, p}
$$

for some smooth nonnegative function E on M^{\prime}, then

$$
\operatorname{Area}\left(Y \mid M^{\prime}\right)=\int_{M} E d i=u .
$$

Now let $Y^{*}: M \rightarrow Q$ be a smooth variation of a conformal map $Y: M^{\prime} \rightarrow Q$ with $Y^{t i}=Y$ outside M^{\prime}. Let $\delta Y=$
$\left.\left(\partial Y^{t} / \partial t\right)\right|_{t w \infty}$. Putting $a_{1, \nu}=\left\langle Y_{1}, \delta Y_{j}\right\rangle \quad$ we have

$$
\left\langle Y_{\mu}^{t} \cdot Y^{t}\right\rangle=E \cdot \delta_{1 y}+t\left(a_{1,}+a_{\mu}\right)+O\left(t_{12}\right),
$$

and hence

$$
\begin{aligned}
& \left\|Y_{1}^{t} \wedge Y^{t}=\right\|= \\
& E=\left(1+O\left(t^{2}\right)\right)+2 t E\left(a_{11}+a_{2}\right)-t=(a+a=1)+O(t)
\end{aligned}
$$

In those points where $E \neq 0$, we get

$$
\begin{aligned}
\left\|Y_{1}^{t} \wedge Y^{t}=\right\| & =E\left(1+2 t E^{-1}\left(a_{11}+a_{a z}\right)+O(t=1)\right)^{1 /=} \\
& =E+t\left(a_{11}+a=a\right)+O(t=1
\end{aligned}
$$

whence $\quad \delta \| Y_{1} \wedge Y_{z \|}=a_{i 1}+a_{z a}$. On the other hand, where $E=0$ we also have $a_{\mu}=0$, so $\left\|Y^{t} \wedge Y^{t}=\right\|=O(t)$ which implies $\delta\left\|Y_{: 1} \wedge Y=\right\|=0$ in these points. In particular, $A(t):=A r e a\left(Y^{t} \mid M^{\prime}\right)$ is differentiable at $t=0$ with

$$
\delta A=\int_{M^{\prime}}\left(a_{x 1}+a_{2 x}\right) d a u
$$

and since

$$
a_{1 y}=\left\langle Y_{x}, \delta Y_{y}\right\rangle=\left\langle Y_{1}, \delta Y\right\rangle,\left\langle Y_{1, y}, \delta Y\right\rangle
$$

we get

$$
\delta A=\int_{M^{\prime}}(\operatorname{div} 5) d d^{\prime \prime} u-\int_{M^{\prime}}\left\langle\Delta_{u} Y, \delta Y\right\rangle d=u=-\int_{M^{\prime}}\left\langle\Delta_{u} Y, \delta Y\right\rangle d=u
$$

 any compatible metric on M with Laplacian Δ_{G} and area element
 (V) $\delta(\operatorname{Area}(Y))=\int_{M^{\prime}}\left\langle\Delta_{\text {wi }} Y, \delta Y\right\rangle d A_{\text {qi }}$.

This is the first variation formula for the area of conformal maps. Using a partition of unity, we see that (V) is valid for any relatively compact open subset $M^{\prime} \subset M$. If the variation Y^{t} takes value in some submanifold $Q \subset \mathbb{R}^{m}$, then δY is a tangent vector of Q and so we only need the TQ-component of $\Delta_{\text {on }} Y$.

5. Minimal surfaces in quadrics

Let M be a Riemann surface. Fix a (possibly indefinite) scalar product 〈, > on \mathbb{R}^{m} and let $Y: M \rightarrow \mathbb{R}^{m}$ be a conformal immersion. More precisely, for any holomorphic chart $z=u_{\perp}+i u z$ of M we have (with a slight change of notation)

$$
\left.\left\langle Y_{1}, Y_{2}\right\rangle=0,\left\langle Y_{1}, Y_{1}\right\rangle=\left\langle Y_{2}, Y_{m}\right\rangle=: 2 E\right\rangle 0 .
$$

where $Y_{i}=\partial_{i} Y=\partial Y / \partial u_{i}$. Let $N Y$ be the normal bundle and α : $T M$ © $\mathrm{TM} \rightarrow \mathrm{NY}$ the second fundamental form with the components $\alpha_{1 .}=\left(Y_{1, j}\right)^{+}$(where ${ }^{1}$ denotes the normal part). Then

$$
\eta=\left(\alpha_{11}+\alpha_{z z}\right) /(4 \mathrm{E})
$$

is the mean curvature vector. Using the Wirtinger operators

$$
\partial_{z}=1 / 2\left(\partial_{1}-i \partial_{z}\right), \partial_{z}=1 / 2\left(\partial_{1}+i \partial_{z}\right)
$$

we get after extending the scalar product < , > complex biInearly to $\mathbb{C l}^{m}$

$$
\begin{aligned}
& \left\langle Y_{m}, Y_{m}\right\rangle=\left\langle Y_{m}, Y_{m}\right\rangle=0,\left\langle Y_{m}, Y_{m}\right\rangle=E, \\
& Y_{z=}=\alpha_{m}=1 / 4\left(\alpha_{11}+\alpha_{z m}\right)=E \cdot \eta
\end{aligned}
$$

(note that $Y_{x=}$ is othogonal to Y_{m} and Y_{m}, hence a normal vector).

Now consider the quadric

$$
Q=\left\{x \in \mathbb{R}^{n} ;\langle x, x\rangle=1\right\}
$$

in \mathbb{R}^{n} and let $Y: M \rightarrow Q$ be a conformal minimal immersion.
Then η is normal to Q, hence a multiple of Y, and since

$$
\langle\eta, Y\rangle=\left\langle Y_{x}=, Y\right\rangle / E=-\left\langle Y_{z}, Y=\right\rangle / E=-1,
$$

we get $\eta=-Y$, thus

$$
Y_{x}==-2 E \cdot Y \text {. }
$$

On M we consider the quartic form $\langle\alpha, \alpha\rangle$. More generally. if \wedge is any symmetric m-form on M, it has the coordinate representation
and this decomposition is invariant under change of the holomor-

Proposition 1 Let $Y: M \rightarrow Q \subset \mathbb{R}^{m}$ be a conformal minimal immersion. Then

$$
\langle\alpha, \alpha\rangle\langle 4,0\rangle=\left\langle Y_{m, m,}, Y_{m m}\right\rangle d^{4},
$$

and $\langle\alpha, \alpha\rangle\langle 4, \infty$ is a holomorphic form.

Proof. We have $Y_{m z}=a \cdot Y_{w}+b \cdot Y_{z=}+\alpha_{m}$ for some functions a, b. But since $b \cdot E=\left\langle Y_{m, z}, Y_{m}\right\rangle=0$, we have $b=0$. Therefore $\left\langle Y_{x w,}, Y_{z w x}\right\rangle=\left\langle\alpha_{x w,}, \alpha_{z w}\right\rangle$. Moreover,
since $\left\langle Y_{,} Y_{w x}\right\rangle=-\left\langle Y_{w}, Y_{m}\right\rangle=0$ and $\left\langle Y_{w}, Y_{x w}\right\rangle=Y_{2}\left\langle Y_{w}, Y_{w}\right\rangle_{m}=0$. Therefore, the form is holomorphic.

Remark. If Y is only a conformal harmonic map, then Y is a branched minimal immersion (cf. [GOR], [ET]). In particular, Y is an immersion outside a set of isolated points. Since the form $\left\langle Y_{m} \ldots, Y_{w *}\right\rangle d z^{*}$ is defined everywhere, it is holomorphic also in this case.

The case $n=5$ is of particular interest. Then $N Y$ is a 2 dimensional bundle. We may choose a local pseudo-orthonormal frame
$N_{1}, N=$ of $N Y \otimes \mathbb{C}$, i.e.

$$
\left\langle N_{1}, N_{1}\right\rangle=\left\langle N_{2}, N_{m}\right\rangle=0,\left\langle N_{1}, N_{2}\right\rangle=1 .
$$

Then we have the decomposition

$$
\left\langle Y_{x=}, Y_{x z}\right\rangle=\left\langle Y_{m=x}, N_{1}\right\rangle\left\langle Y_{m w}, N z\right\rangle
$$

and each of the factors satisfies a Cauchy-Riemann equality:

Proposition 2.
 term vanishes since $Y_{m} \bar{z}=-E \cdot Y$, and N_{1} is perpendicular to Y and to Y_{x} since N_{1} is a tangent vector of Q and a normal vector of Y. Moreover, since $\left\langle N_{1} \bar{m}_{m}, Y_{m}\right\rangle=-\left\langle N_{1}, Y_{w} \bar{m}\right\rangle=0$ and $\left\langle N_{1}=, N_{1}\right\rangle=0$, the vector $N_{1}=$ lies in the span of Y_{x} and N_{1}. due to the pseudo-orthogonality of the bases $Y_{m, \ldots}, Y_{z}$ and N_{1}, N_{2}. But $Y_{z=z}$ is orthogonal to Y_{z}, hence only the N_{1}-component of $N_{1} \equiv$ (which is $\left\langle N_{1}=, N_{m}\right\rangle \cdot N_{1}$) contributes to the scalar product
 first equation. The second follows since $\left\langle N_{1}=N_{2}\right\rangle=-\left\langle N_{m}, N_{1}\right\rangle$.

Remark, Clearly, Proposition 2 implies Proposition 1 in the 4dimensional case. Moreover it shows that any of the functions $\left\langle Y_{2 m,}, N_{A}\right\rangle$ has isolated zeros or vanishes everywhere. This remains true for the non-zero factor if the product $\left\langle Y_{m, \ldots} Y_{m=}\right\rangle$ vanishes.

Proposition 3. If $\left\langle Y_{x}, Y_{x, m}\right\rangle=0$, then

$$
N_{s, m} \equiv 0\left(\bmod N_{j}\right)
$$

either for $j=1$ of for $j=2$.

Proof. Since one of the factors $\left\langle Y_{x m,}, N_{j}\right\rangle=-\left\langle Y_{x}, N_{j}\right\rangle$ in the
 tangent component of $N_{s *}$ vanishes, and so $N_{s *}$ is a multiple of N, .

Remark. So far, we did not distinguish between different types of the scalar product \langle,$\rangle in \mathbb{R}^{w=}$. But the consequences of the last result are different for various types. In general, Proposition 3 only says that [$\left.N_{\mu}\right]$ is an antiholomorphic mapping into $\mathbb{C P}{ }^{4+4}$, but in case of the type $(++++-), N_{1}$ and N_{2} are real vectors, and so [N.s] must be a constant line, and $Y(M) \subset$ [$\mathrm{N}_{\boldsymbol{\prime}}$]..

Proposition 4. Let \wedge be a holomorphic m-form on a compact Riemann surface M. Then either $\wedge \equiv 0$ or

$$
x(M)=-N(\Lambda) / m
$$

where $N(\Lambda)$ is the number of zeros, counted with their order, and X(M) the Euler number.

Proof. \wedge is a section in the complex line bundle $\otimes^{m} \mathrm{~T}^{+\mathrm{M}} \mathrm{M}$ where T+M denotes the bundle of (1,0)-forms or the complex dual of TM , viewed as a complex line bundle. The Euler number of this bundle is $x\left(\otimes^{m} T^{+} M\right)=-m \cdot x(T M)$. By the index theorem of Poincarè Hopf, this Euler number equals the index sum of the zeros of \wedge, unless $\wedge \equiv 0$. But locally, \wedge behaves like a holomorphic function, and so the index of a zero is the order of that zero, which finishes the proof.

6. Willmore Spheres and Tor 1

Now let $x: M \rightarrow \mathbb{R}^{: 3}$ be a Willmore immersion. Then by ch. 3 , the conformal Gauß map $Y: M \rightarrow Q^{4}$ is a conformal harmonic map. If Y is not constant (which means that X is not an umbilic surface), then Y is a conformal minimal immersion on some open dense subset $M^{\prime} \subset M$. In fact, the mapping $p \rightarrow d Y_{p}\left(T_{p} M\right): M^{\prime}->$ $G=\left(\mathbb{R}^{\# \# 5}\right)$ can be smoothly extended to all af M (Cf. [ET]) so that the normal bundle $N Y$ is defined everywhere. The induced metric on NY has type $(+-)$, and so it contains two null lines $\left[N_{1}\right]$. [N_{z}] which correspond to the two enveloping surfaces, by (E), ch.2. One of these enveloping surfaces is the given immersion x. so we may assume $N_{1}=X$. Bryant [Br] calls the remaining enveloping surface $X^{\wedge}:=N$, the conformal transform of X. In the case where $\left\langle Y_{x x}, Y_{z z}\right\rangle \equiv 0$, this is a constant map, by Proposition 3 of the preceding chapter. Then $X^{\wedge} \in L$ represents a point $x^{\wedge} \in \mathbb{R}^{\infty} \cup\{\infty\}$ which can be mapped to ∞ by a Moebius transformation $g \in M o e b(3)$ (in fact by an inversion). Since all the spheres corresponding to Y pass through x^{\wedge}, they are mapped onto planes under 9 . But these planes are the central spheres of the immersion $g \circ x: M \rightarrow \mathbb{P} U\{\infty\}$, and so $g \circ x$ is a minimal immersion. Thus we have proved

Proposition. Let $x: M \rightarrow \mathbb{R}^{ヨ}$ be a willmore immersion. Let Y : $M \rightarrow Q^{* 4}$ be its conformal Gauß map and suppose that $\langle\alpha, \alpha\rangle$, 4,0 . $\equiv 0$ where α denotes the second fundamental form of Y. Then x is either umbilic or a Moebius transform of a minimal immersion $x^{\prime}: M \rightarrow \mathbb{R}^{i=1} \cup\{\infty\}$.

If M is homeomorphic to a sphere, then its Euler number is positive, and so we must have $\langle\alpha, \alpha\rangle\langle 4,0\rangle \equiv 0$, by Prop. 4 of ch. 5 . Hence we get a main result of $[\mathrm{Br}]$:

Theorem 1 A Fillmore sphere in \mathbb{R}^{*} is either umbilic or a Moebius transform of some complete minimal surface with finite total curvature.

The last statement holds since in the minimal case, the total curvature is the Fillmore functional (up to sign) which is invariant under Moebius transformations.

Moreover we note that any branch point of Y gives a zero of $\left\langle Y_{x *}, Y_{x m}\right\rangle=-\left\langle Y_{m}, Y_{z m z}\right\rangle$. The branch points of Y in turn are umbilic points of x, by ch.3. Prop.1. Thus it follows from Prop. 4 of ch. 5 that a Fillmore torus $x: T^{m} \rightarrow \mathbb{R}^{3}$ cannot have umbilic points unless $\langle\alpha, \alpha\rangle\langle 4, \infty\rangle=0$. In the latter case, it follows from Osserman's theorem [O] that $W(x) \geq 8 \pi>2 \pi=$. In particular we get:

Theorem 2. An immersed torus in $\mathbb{R}^{: 3}$ which minimizes the fillmore functional has no umbilic points. Mmiparovert!

Appendix

The functional W has been studied first by W.Blaschke [Bl] and G. Thomsen [T]. They considered it as a substitute for the area of surfaces in conformal geometry. Consequently, the surfaces x with $\delta W(x)=0$ (Willmore immersions) were called "Konformminimalflächen" (conformally minimal surfaces). So the conformal invariance of W was clear from the beginning. Later, B.Y.Chen observes in a more general context [Cn] that W is in fact invariant not only under conformal diffeomorphisms, but under conformal changes of the metric of the target space. This is easily seen as follows: If M^{m} is a differentiable manifold and I some interval, consider the Riemannian metric $g=f_{m}+g_{t}$ on $I \times M$, where f is a positive function on $I \times M$ and $g_{t} \quad a$ family of metrics on M. Then $N:=f \cdots \cdot \partial / \partial t$ is a unit normal vector field of the hypersurface $\{t\} \times M$ and if b denotes the second fundamental form of $\{t\} \times M$ with respect to $-N$, we get $d g_{t} / d t=2 f \cdot b$.

Thus, if we consider a conformally changed metric $g^{\wedge}=\lambda^{\wedge} \cdot g$ on $M \times I$, the corresponding second fundamental form b^{\wedge} satisfies

$$
2 \mathrm{f} \cdot \lambda \cdot \mathrm{~b}^{\wedge}=d g_{t} \wedge / d t=2 \lambda \cdot(\partial \lambda / \partial t) \cdot g_{t}+\lambda^{2} \cdot 2 \mathrm{f} \cdot \mathrm{~b} .
$$

Thus the corresponding $2^{\text {met }}$ fundamental tensors B, B^{\wedge} defined by $g_{t}(B(x), y)=b(x, y), g_{*} \wedge\left(B^{\wedge}(x), y\right)=b^{\wedge}(x, y)$ satisfy

$$
\lambda \cdot B^{\wedge}(x)=B(x)+\mu \cdot x
$$

with $\mu=f^{\cdots \cdots} \cdot \partial(\log \lambda) / \partial t$. Hence, if k are the eigenvalues of B and dve the volume element of g_{0}, then $\sum_{j, j}\left|k_{1}-k_{j}\right| m d v_{t}$ is invariant under conformal changes of the metric 9 .

Thomsen [T] already states the first variational formula for the functional W (cf. Prop. 3 of Ch .3) which was derived by W.Schadow. The second variation was computed much later by J.L.Weiner [We] who also observes that the Willmore torus (cf. Ch.1) is stable in the sense that the second variation of W is nonnegative. The quartic form \wedge which we introduce in Ch. 5 was considered by Chern [Ch] for minimal surfaces in S^{n}. It was the idea of R.Bryant [Br] to use this form for the conformal Gauß map of a Willmore immersion.

References.

[Bl] W.Blaschke: Vorlesungen über Differentialgeometrie, III. Springer 1929
[Bo] G.Bol: Zur Moebius-Geometrie der Kugelkongruenzen. J.f.d. Reine und Angew. Math. 237. 109 - 165 (1969)
[Br] R.L.Bryant: A duality theorem for willmore surfaces. J. Differential Geometry 20, 23 - 53 (1984)
[Cn] B.Y.Chen: Some conformal invariants of submanifolds and their applications. Bol. Un. Mat. Ital. (4) 10, 380-385 (1974)
[Ch] S.S.Chern: On the minimal immersions of the two-sphere in a space of constant curvature. In: R.C.Gunning (ed.): Problems in Analysis, pp. 27 - 40. Princeton University Press 1970
[ET1] J.-H.Eschenburg \& R.Tribuzy: Constant mean curvature surfaces in 4-space forms. Rend. Sem. Mat. Univ. Padova (1988)
[ET] J.-H.Eschenburg \& R.Tribuzy: Branch points of conformal mappings of surfaces. Math. Ann. 279, 621-633 (1988)
[GOR] R.Gulliver, R.Ossermann \& H.Royden: A theory of branched immersions of surfaces. Am. J. Math. 95, 750-812 (1973)
[LY] P.Li \& S.T.Yau: A new conformal invariant and its application to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. math. 69. 269 - 291 (1982)
[0] R.Osserman: A survey of Minimal surfaces. Van Nostrand 1969
[S] L.Simon: Existence of Willmore surfaces. In: Geometry and Partial Differential Equations. Miniconference Camberra 1985, Proc. Cent. Math. Anal. Austral. National University 10. 187-216 (1986)
[Sp] M.Spivak: A comprehensive Introduction to Differential Geometry, vol.III, Publish or Perish 1975
[T] G.Thomsen: Grundlagen der konformen Flächentheorie. Abh. Math. Sem. Univ. Hamburg 3, 31 - 56 (1924)
[We] J.L.Weiner: On a problem of Chen, Willmore et al., Ind. Univ. Math. J. 27, 19 - 35 (1978)
[W] T.J.Willmore: Note on embedded surfaces. An. Stiint. Univ. "Al.I.Cuza" Iasi, Sect. Ia Mat., 11. 493 - 496 (1965)
(March 1988)
J. -H. Eschenburg

Institut für Mathematik
Memminger Str. 6
D-8900 Augsburg

