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Abstract. In the PhD thesis of Yongdong Huang with N.C. Le-
ung [4, 5], all compact symmetric spaces are represented as (struc-
tured) Grassmannians over the algebra KL := K ⊗R L where K, L

are real division algebras. This was known in some (infinitesimal)
sense for exceptional spaces (see [1]); the main purpose in [4, 5]
was to give a similar description for the classical spaces. In the
present paper we give a different approach to this result by inves-
tigating the fixed algebras B of involutions on A = KL with half-
dimensional eigenspaces together with the automorphism groups
of A and B. We also relate the results to the classification of self-
reflective submanifolds in [6, 2].

1. Introduction

A main problem in Riemannian geometry is understanding the ex-
ceptional symmetric spaces. In the present paper we restrict our atten-
tion mainly to the type-I case corresponding to symmetric pairs (G,K)
where G is a compact simple Lie group, [3]. There are 12 exceptional
spaces of this kind. The most prominent examples are the “Rosen-
feld planes” (O ⊗ L)P2 (shortly OLP

2) where L is one of the division
algebras R, C, H, O. These are defined in terms of the (half) spin rep-
resentations of Spin8+l on R

n with n = 24+m where l = dimR L = 2m

and m = 0, 1, 2, 3. It seems to be impossible to define these spaces re-
ally as projective planes over the algebra A = O ⊗R L. However, they
behave in certain ways like projective planes. In particular, there is
Vinberg’s formula ([1], p.192) for the Lie algebra of G = Aut (An, 〈 , 〉)
for A = K ⊗ L,

(1.1) g = aut(K) ⊕ Ao(A
n) ⊕ aut(L)
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where Ao denotes the antihermitian trace zero matrices.1 This formula
makes still sense when K = O and L ∈ {R, C, H, O} provided that
n ≤ 3, and it describes the Lie algebras of the groups G = F4, E6, E7, E8

corresponding to the Rosenfeld planes. All other exceptional symmet-
ric spaces (with the only exception G2/SO4 = {H ⊂ O}, the space
of quaternion subalgebras of the octonians) are obtained as spaces of
certain self-reflective2 subspaces of the Rosenfeld planes, e.g. E6/F4 =
{OP

2 ⊂ OCP
2}, the set of all subspaces congruent to OP

2 in OCP
2.

These facts motivated Y. Huang and N.C. Leung to investigate struc-
tures related to A = K ⊗ L on symmetric spaces [4, 5]. In some sense
they tried to adapt the classical case to the exceptional one.

The classical type-I symmetric spaces seem to be easy to describe.
There are three families:

(1) Grassmannians {Kp ⊂ K
n} for K ∈ {R, C, H},

(2) R-structures on C
n, {Rn ⊂ C

n},
C-structures on H

n, {Cn ⊂ H
n},

(3) C-structures on R
2n, {R2n ∼= C

n},
H-structures on C

2n, {C2n ∼= H
n}.

The first two families are Grassmannians in a natural way, sets of
subspaces W which are invariant (1) or anti-invariant (2) under some
complex structure j ∈ K. Anti-invariance means jW = W⊥; this
property is also called Lagrangian.3 Only case (3) is slightly different.
How can we assign a subspace to a complex or quaternionic structure
J on a real or complex vector space V ? We just take the eigenspace
W corresponding to the eigenvalue i =

√
−1. But W is contained not

in V itself but in V ⊗ C. So we arrive at subspaces of (C ⊗ C)n and
(H ⊗ C)n.

1Equation (1.1) gives only the vector space decomposition; the Lie bracket is
more complicated: For any A = (aij), B = (bij) ∈ Ao(A

n) we put [A,B] =
(AB−BA)o + 1

3

∑

ij Daij ,bij
where ( )o denotes the traceless part and Da⊗a′,b⊗b′ =

〈a′, b′〉Da,b + 〈a, b〉Da′,b′ and where Da,bc = [[a, b], c] − 3((ab)c − a(bc)) for any
a, b, c ∈ K, see [1].

2A reflective submanifold Q of a symmetric space P is a fixed set component
of some involution r on P . Reflective submanifolds come in pairs: For any q ∈ Q

there is another reflective submanifold Q′ intersecting Q perpendicularly at q, a
fixed set component of the involution rsq of P , where sq denotes the symmetry at
q. If Q and Q′ are congruent, the submanifold is called self-reflective.

3The 2-form ω(x, y) = 〈jx, y〉 is a symplectic form, and W is a Lagrangian
subspace for ω ⇐⇒ jW = W⊥.



SYMMETRIC SPACES AS GRASSMANNIANS 3

Huang and Leung have studied systematically the various types of
Grassmannians over V = A

n for A = K ⊗ L with K, L ∈ {R, C, H}.
They distinguish four kinds of such Grassmannians {W ⊂ V }:

(1) pure, {Ap ⊂ A
n},

(2) Lagrangian, {An
1 ⊂ A

n} where A1 = K1 ⊗L and K1 ⊂ K is the
half-dimensional subalgebra,

(3) double Lagrangian, {An
2 ⊕jĵA

n
2 ⊂ A

n} where A2 = K1⊗L1 and

K = K1 + jK1, L = L1 + ĵL1,
(4) isotropic, {W = (sW )⊥ ⊂ A

n} where s is a paracomplex struc-
ture4 commuting with the scalars in A.

All these sets of linear subspaces have in common that they are pre-
served under the reflection at any of their elements, thus they define a
symmetric subspace of the corresponding pure Grassmannian. More-
over, the defining involution descends to an involution of the projective
space P(An) = {A1 ⊂ A

n}. Thus the linear subspaces of A
n become

self-reflective subspaces of P(An). It seems that the latter property sur-
vives for K = O when n ≤ 3 while the linear algebra description breaks
down: By lack of associativity, A

n is not an A-module for A = O ⊗ L.

We are using a different approach which unifies the Grassmannians of
type 2,3,4. We first investigate involutions (order-2 automorphims) σ
of the algebra A = K ⊗ L which have eigenspaces of equal dimensions
(balanced involutions). There are two types of such involutions which
lead to the Lagrangian and double Lagrangian subspaces when applied
component-wise to A

n. We get a few more examples by extending
our investigation also to the fixed algebra B ⊂ A of every balanced
involution and to the tensor products CA of A with the paracomplex
numbers C. Then we determine the orthogonal automorphism groups
of A and B which consist of all R-linear maps commuting with the
scalar multiplication by the generators of A or B. Thus we obtain
the usual coset representation of the corresponding symmetric spaces
{Ap ⊂ A

n} and {Bn ⊂ A
n}. We end with a glance onto the exceptional

spaces by comparing the tables of [4, 5] with the lists of self-reflective
submanifolds in [6] and [2].

Aside from the exceptional spaces, the main subject of the present
paper is a representation of classical symmetric spaces as Grassman-
nians which seems to be of some value on its own. There are other
representations of a symmetric space P = G/K as a Grassmannian.
The easiest way is probably to assign to every point p ∈ P the (−1)-
eigenspace of the involution σ = Ad(sp) on g where sp is the symmetry

4A paracomplex structure is an involution with eigenspaces of equal dimensions.
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at p. However, this requires already the knowledge of the Lie algebra
g of our group G. Our representation is different: The algebras A and
B are not directly related to P . Thus they define a nontrivial new
structure on P . Moreover it is clear from this representation that there
is a larger noncompact group acting on P , namely the group of all A-
linear automorphism of A

n (not just the orthogonal ones). This shows
immediately that all these spaces are symmetric R-spaces (which does
not hold for most of the exceptional spaces). However, not all symmet-
ric R-spaces can be represented this way though we have covered all
infinitesimal irreducible types.

It is our pleasure to thank Peter Quast for several valuable hints. The
present research was done while the second author was on sabbatical
at the Department of Mathematics, University of Augsburg, whose
hospitality is gratefully acknowledged.

2. Tensor products of division algebras and involutions

Let A = K ⊗R L =: KL where K, L are two associative division
algebras, K, L ∈ {R, C, H}. This becomes an associative algebra with
the multiplication

(2.1) (u ⊗ x)(v ⊗ y) = uv ⊗ xy

for u, v ∈ K and x, y ∈ L. Let σ ∈ Aut (A) be an involutive automor-
phism (σ2 = I). Assume that there is some invertible element ao ∈ A
with σ(ao) = −ao. Then the (left or right) multiplication with ao an-
ticommutes with σ since σ(aob) = −aoσ(b). Thus it interchanges the
fixed and the anti-fixed spaces of σ and consequently, the fixed algebra

(2.2) B = A
σ = {a ∈ A : σ(a) = a}

has half dimension. We will call such involutions balanced. We have

(2.3) A = B ⊕ aoB = B ⊕ Bao.

We see two kinds of balanced involutions on A: those of type σ ⊗ I or
I ⊗ τ and those of type σ⊗ τ , where σ and τ are nontrivial involutions
of K and L, respectively. We will apply the involutions to “vectors” in
A

n rather than to “scalars” in A. The fixed spaces of involutions of the
first (second) kind are called Lagrangian (double Lagrangian) subspaces
in [4, 5]. In the following table, everything with ˆ refers to the second
tensor factor. By C we denote the paracomplex numbers, C = R + sR

with s2 = 1. We have s = j1ĵ2 for two complex structures j1 ∈ K and
j2 ∈ L.

In the second part of the table we are starting with the three new
algebras C, C̃C = C⊗̃C, C̃CC = C⊗̃CC which we have obtained as
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No. A generators σ ao B generators
1 C i κ i R -
2 H i, j Ad(i) j C i

3 CC i, î κ i C i

4 CC i, î κκ̂ i, î C îi

5 HC i, j, î κ̂ î H i, j

6 HC i, j, î Ad(i) j CC i, î

7 HC i, j, î Ad(i)κ̂ j, î C̃C i, jî

8 HH i, j, î, ĵ Ad(i) j CH i, î, ĵ

9 HH i, j, î, ĵ Ad(i)Ad(̂i) j, ĵ C̃CC i, î, jĵ
10 C s κ̃ s R -

11 C̃C s, î κ̃ s C i

12 C̃C s, i κ i C s

13 C̃CC s, i, î κ̃ s CC i, î

14 C̃CC s, i, î κ i C̃C s, î

Table 1

subalgebras. Note that the multiplication on C̃A = C⊗̃A is different:
the generator s of C anticommutes with the complex structures (i and

i, î, respectively) generating A, see Table 1, No. 7 and 9. These new
algebras also allow balanced involutions σ. By κ̃ we denote the con-
jugation x + sy 7→ x − sy in C (extended to tensor products with C).
Table 1 can be further extended, see section 6.

3. The automorphism group of the spaces A
n

We are considering the free (K ⊗ L)-module V = A
n ∼= R

dn with
its canonical inner product, where d = dimR A = dim K dim L. The
elements of A

n are rows x = (x1, . . . , xn) with x1, . . . , xn ∈ A, and
scalars a ∈ A act from the left, ax = (ax1, . . . , axn). An R-linear map
A on A

n is A-linear if it commutes with this scalar multiplication. If
we want to express A by a matrix with entries in A, we have to let A
act from the right. However, we will consider A as a map on A

n rather
than as a matrix, thus we keep writing A(x). First we determine the
automorphism group of (An, 〈 , 〉), consisting of all orthogonal A-linear
maps on A

n. We just have to find those orthogonal maps on A
n which

commute with the generators of A (see Table 1 above).

3.1. A = C ⊗ C. On the real vector space V = (C ⊗ C)n we have

two complex structures i = i ⊗ 1 and î = 1 ⊗ i which commute with
each other. Thus, the composition S = îi is self adjoint with S2 = I.
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Hence V is decomposed into the two eigenspaces V+ = {S = I} and
V− = {S = −I}. On the latter space V−, the two complex struc-

tures agree, for îi = −1 ⇐⇒ î = i, while they differ by a sign on
V+. Each orthogonal and (C ⊗ C)-linear map A on V preserves i, î, S,
and the subspaces V+, V− together with their complex structures are
kept invariant, so A defines a pair of unitary linear maps (A+, A−) on
(V+, V−). Vice versa, each such pair defines an orthogonal (C ⊗ C)-
linear map on V . Let κ̂ denote the conjugation in the second tensor
factor, κ̂(z ⊗ w) = z ⊗ w̄. This commutes with i and anticommutes

with î, thus it anticommutes with S = îi. Therefore κ̂ interchanges
V+ and V− which shows that V+ and V− have the same dimension, i.e.
both are isomorphic to C

n. Thus

(3.1) Aut (CC)n ∼= Un × Un.

3.2. A = H ⊗ C. On the real vector space V = (H ⊗ C)n, we have the
two anticommuting complex structures i, j (and k = ij) of H⊗1 and a

third one, î, of 1⊗ C, which commutes with the two others. As before
we define the self adjoint involution S = îi with its eigenspaces V+, V−.
The remaining complex structure j interchanges these subspaces be-
cause j anticommutes with S. In particular, the two eigenspaces V±

must have the same dimension. Since V has complex dimension 4n
(with respect to the complex structure î), V−

∼= C
2n. Any H⊗C-linear

isometry A on V commutes with S. Therefore the space V− is invariant
under A. The symmetry A is already determined by A′ = A|V−

, be-
cause for x ∈ V+ we have jAx = Ajx = A′jx. Conversely, each C-linear
isometry A′ on V− defines an (H⊗C)-linear isometry A on V where A
on V+ is defined by Ajx = jA′x, x ∈ V−. Thus

(3.2) Aut (HC)n ∼= U2n.

3.3. A = H⊗H. On the real vector space V = (H⊗H)n, we have two

pairs of anticommuting complex structures i, j and î, ĵ, and complex
structures from different pairs commute with each other. We form two
self-adjoint involutions Si = îi and Sj = jĵ, which also commute with
each other: because of the two sign changes, we get

SiSj = îijĵ = ijîĵ = jiĵî = jĵîi = SjSi.

These have a simultaneous eigenspace decomposition

(∗) V = V −

−
⊕ V +

−
⊕ V −

+ ⊕ V +
+

where V +
− = V− ∩ V + etc. Each (H ⊗ H)-linear isometry A on V

commutes with Si and Sj and therefore it leaves the four subspaces
invariant. In particular it defines an orthogonal map A′ on V −

− . The
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mapping Si commutes with i, î and anticommutes with j, ĵ and for Sj, it
is vice versa. Therefore, i interchanges the spaces V −

− , V +
− and similarly

V −

+ , V +
+ (the lower index is preserved), while j interchanges V −

− with
V −

+ and V +
− with V +

+ (the upper index is preserved). In particular, V −

−

is mapped onto V +
− , V −

+ , V +
+ by i, j, ij, respectively. Since A commutes

with these maps, it is already completely determined by its restriction
A′ = A|V −

−
. Conversely, each orthogonal map A′ on V −

− can be extended

uniquely to a (H ⊗ H)-linear isometry of A on V by applying i, j, ij.
Since all summands of the decomposition (∗) have the same dimension
4n (a quarter of dim(HH)n = 16n), we have

(3.3) Aut (HH)n ∼= O4n.

3.4. A = C. On V = Cn, the paracomplex structure s ∈ C acts by
scalar multiplication and decomposes V into two eigenspaces V± which
have to be preserved by any automorphism A. Since s anti-commutes
with the paracomplex conjugation κ̃, the two eigenspaces have equal
dimension. Thus A splits into two orthogonal maps A± = A|V±

, and
vice versa, any pair of such maps defines an automorphism of Cn. Hence
we obtain

(3.4) Aut Cn ∼= On × On.

3.5. A = C⊗̃C. Besides the paracomplex structure s we have the com-
plex structure i acting on V = (C⊗̃C)n, and the two structures i, s
anticommute. Thus i interchanges the two s-eigenspaces, V+ = iV−.
Any automorphism A on V commutes with both structures, hence
A+ is determined by A−, more precisely, A+(iv−) = iA−(v−) for all
v− ∈ V−. Vice versa, any orthogonal map A− on V−

∼= R
2n extends to

an automorphism A on V , using A(iv−) = iA(v−). Hence we obtain

(3.5) Aut (C̃C)n ∼= O2n.

3.6. A = C⊗̃(C ⊗ C). Now we have two commuting complex struc-

tures i, î which both anti-commute with the paracomplex structure
s. Then S = îi commutes with s, and V has another splitting by
the eigenspaces of S, called V ±, compatible with the previous one.
While i and î commute with S and anticommute with s, preserving
V ± and interchanging V±, the complex conjugation κ(z ⊗ w) = z̄ ⊗ w
on C ⊗ C commutes with s and anticommutes with S. Thus it pre-
serves V+ and V− while interchanging V + and V − and consequently,
all four intersections V −

− , V −

+ , V +
− , V +

+ have equal dimension 1
4
dn = 2n

for d = dim C̃CC = 8. As before, an automorphism A is determined
by A−, its restriction to V−, because V+ = iV−. Moreover, since A
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commutes with both s and S, it preserves the splitting V− = V −

− ⊕V +
− .

Thus A− splits into orthogonal maps A−

− and A+
− on V −

− and V +
− , re-

spectively, and vice versa, any such pair defines an automorphism of
V . Thus

(3.6) Aut (C̃CC)n ∼= O2n × O2n.

We insert the results of this section into the following table.

No. 1 2 3 4 5 6 7 8 9

A R C H CC HC HH C C̃C C̃CC

Aut A
n On Un Spn U2

n U2n O4n O2
n O2n O2

2n

Table 2

4. Grassmannians

A (pure) Grassmannian Gp(A
n) for A is the space of free submod-

ules of A
n with rank p; these are R-linear subspaces which are mapped

to the standard space A
p ⊂ A

n for p ≤ n/2 under some automor-
phims of A

n. Symbolically we write Gp(A
n) = {Ap ⊂ A

n}. We may
also consider Gp(A

n) as the space of decompositions isomorphic to the
standard decomposition A

n = A
p ⊕ A

q with n = p + q. The group
Aut (An) acts transitively on this space, and the isotropy group of the
standard decomposition is Aut (Ap) × Aut (Aq). Any such Grassman-
nian is a compact symmetric space where the symmetry at the standard

decomposition is given by the reflection
(

Ip

−Iq

)

at the subspace A
p.

The case p = 1 is of particular importance; the Grassmannian G1(A
n)

is called the (n − 1)-dimensional projective space over A, denoted
P(An) = AP

n−1. The elements of P(An) are free A-submodules of
rank one; they are of the form [v] = Av where v ∈ A

n has at least one
invertible component. We list these spaces in Table 3 below.

It seems disturbing that the Grassmannians for A = C̃C and A =
C̃CC are not complex manifold. Its tangent vectors at A

p are A-linear
maps f : A

p → A
q. But observe that the map if is no longer A-linear

since if(sx) = isf(x) = −sif(x).

5. Grassmannians of subalgebras

The second type of Grassmannians is the set {Bn ⊂ A
n} or more

precisely the set of linear subspaces of A
n which are mapped onto B

n

by some automorphism of A
n. Here, B ⊂ A is one of the inclusions of

Table 1. Clearly, any automorphism of A
n which preserves the standard
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No. A AP
n−1

AP
2

AP
1

1 R RP
n−1

RP
2 S1

2 C CP
n−1

CP
2 S2

3 H HP
n−1

HP
2 S4

4 CC (CP
n−1)2 (CP

2)2 S2 × S2

5 HC G2(C
2n) G2(C

6) G2(C
4)

6 HH G4(R
4n) G4(R

12) G4(R
8)

7 C (RP
n−1)2

RP
2 × RP

2 S1 × S1

8 C̃C G2(R
2n) G2(R

6) G2(R
4)

9 C̃CC G2(R
2n)2 G2(R

6)2 G2(R
4)2

Table 3

subspace B
n restricts to an automorphism of B

n, but also the converse
is true: Since A

n = B
n+aoB

n, any automorphism B of B
n has a unique

extension to an automorphism A of A
n by putting A(aow) = aoB(w)

for each w ∈ B
n. Thus A commutes with all b ∈ B since bao = aob

′ with
b′ ∈ B. Moreover, A commutes with ao and hence with all a = bao ∈ A:

A(baow) = A(aob
′w) = aoB(b′w) = aob

′Bw = baoBw = bA(aow).

This Grassmannian is also a symmetric space where the symmetry at
the standard subspace B

n is given by the automorphism σ, and we have
{Bn ⊂ A

n} = Aut (An)/ Aut (Bn). We insert the results into Table 4.5

Last we insert these results into the classification scheme of Cartan
and Helgason [3] which shows that all classical symmetric spaces (up
to coverings and S1-factors) can be viewed as Grassmannians over A

n,
some of them even in several ways (Table 5).

6. Isotropic Grassmannians

Any orthogonal map A on R
n is determined by its graph W =

{(x,Ax) : x ∈ R
n} ⊂ R

2n. Since |Ax|2 = |x|2, this is an isotropic sub-
space of R

2n = R
n⊕R

n with the quadratic form 〈v, sv〉 for s =
(

In

−In

)

,

meaning 〈W, sW 〉 = 0 or more precisely, sW = W⊥. Such a space is
called (maximal) isotropic. Hence On can be considered as the isotropic

Grassmannian I(R2n), consisting of all isotropic n-dimensional sub-
spaces of R

2n. Likewise, the (orthogonal) automorphism group of A
n

(where A is as in Table 2) can be viewed as I(A2n), containing the

5It is not difficult to see that the inclusions of Aut (Bn) into Aut (An) as given
in Table 2 are conjugate to the standard inclusions.
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No. A B {Bn ⊂ A
n} {BP

n−1 ⊂ AP
n−1}

1 C R Un/On {RP
n−1 ⊂ CP

n−1}
2 H C Spn/Un {CP

n−1 ⊂ HP
n−1}

3 CC C U2
n/Un = Un {CP

n−1 ⊂ (CP
n−1)2}

4 CC C (Un/On)2 {(RP
n−1)2 ⊂ (CP

n−1)2}
5 HC H U2n/Spn {HP

n−1 ⊂ G2(C
2n)}

6 HC CC U2n/U2
n {(CP

n−1)2 ⊂ G2(C
2n)}

7 HC C̃C U2n/O2n {G2(R
2n) ⊂ G2(C

2n)}
8 HH CH O4n/U2n {G2(C

2n) ⊂ G4(R
4n)}

9 HH C̃CC O4n/O2
2n {G2(R

2n)2 ⊂ G4(R
4n)}

10 C R O2
n/On = On {RP

n−1 ⊂ (RP
n−1)2}

11 C̃C C O2n/Un {CP
n−1 ⊂ G2(R

2n)}
12 C̃C C O2n/O2

n {(RP
n−1)2 ⊂ G2(R

2n)}
13 C̃CC CC (O2n/U2n)2 {(CP

n−1)2 ⊂ G2(R
2n)2}

14 C̃CC C̃C O2
2n/O2n = O2n {G2(R

2n) ⊂ G2(R
2n)2}

Table 4

Type Space dim. Rank Linear Algebra Symmetric Spaces

AI Un/On
n(n+1)

2
n {Rn ⊂ C

n} {RP
n−1 ⊂ CP

n−1}
U2n/O2n {C̃C

n ⊂ HC
n} {G2(R

2n) ⊂ G2(C
2n)}

AII U2n/Spn 2n(n−1) n {Hn ⊂ HC
n} {HP

n−1 ⊂ G2(C
2n)}

AIII Up+q/(UpUq) 2pq p {Cp ⊂ C
p+q} {CP

p−1 ⊂ CP
p+q−1}

U2n/(U2pU2n−2p) {HC
p ⊂ HC

n} {G2(C
2p) ⊂ G2(C

2n)}
U2n/(UnUn) 2n2 n {CC

n ⊂ HC
n} {(CP

n−1)2⊂ G2(C
2n)}

BD I Op+q/OpOq pq p {Rp ⊂ R
p+q} {RP

p−1 ⊂ RP
p+q−1}

O4n/O4pO4n−4p {HH
p ⊂ HH

n} {G4(R
4p) ⊂ G4(R

4n)}
O2n/OnOn n2 n {Cn ⊂ C̃C

n} {(RP
n−1)2 ⊂ G2(R

2n)}
O4n/O2nO2n 4n2 2n {C̃CC

n ⊂ HH
n} {G2(R

2n)2 ⊂ G4(R
4n)}

D III O2n/Un n(n−1) [n
2
] {Cn ⊂ C̃C

n} {CP
n−1 ⊂ G2(R

2n)}
O4n/U2n n {HC

n ⊂ HH
n} {G2(C

2n) ⊂ G4(R
4n)}

C I Spn/Un n(n−1) n {Cn ⊂ H
n} {CP

n−1 ⊂ HP
n−1}

C II Spp+q/SppSpq 4pq p {Hp ⊂ H
p+q} {HP

p−1 ⊂ HP
p+q−1}

Table 5

submodules W ∼= A
n such that W = (sW )⊥ for some symmetric invo-

lution s ∈ Aut A
n with eigenspaces of equal dimension (paracomplex

structure) which commutes with the scalars in A.
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We may pose this structure into the framework of the previous sec-
tion by introducing the algebra CA = C ⊗ A with the usual tensor
multiplication, i.e. s ∈ C commutes with the scalars of A. Then
V = A

2n = (CA)n is a free CA-module which splits into the eigenspaces
of s as V = V+ ⊕ V−. Any automorphism of (CA)n preserves these
eigenspaces which are both isomorphic to A

n, thus

(6.1) Aut (CA)n ∼= (Aut A
n)2.

Moreover, A
n is canonically embedded into (CA)n as the fixed set of

a balanced automorphims: the paracomplex conjugation on CA and
(CA)n,

(6.2) κ̃(a + sb) = a − sb,

which anticommutes with s and thus interchanges V±. Since (CA)n =
A

n + sA
n, any automorphism of A

n extends uniquely to an automor-
phism of (CA)n, and the inclusion of the (orthogonal) automorphims
groups Aut A

n ⊂ Aut (CA)n is the diagonal embedding Aut (An) ⊂
(Aut A

n)2.

Now we have for the isotropic Grassmannians:

I(A2n) = {An ⊂ (CA)n}(6.3)

= {AP
n−1 ⊂ (AP

n−1)2}
= (Aut A

n)2/ Aut A
n

= Aut A
n

Clearly, CR = C. Moreover, CC ∼= CC where we identify s with S = îi
and î with −si. Therefore Un and On did already appear in Table 4,
No. 3 and 10 while Spn = {Hn ⊂ (CH)n} is new.

7. Exceptional spaces

Table 6 contains the exceptional spaces. It is partially taken from
Huang and Leung [4, 5] who include the exceptional spaces in their
tables. We are also using D. Leung’s lists of self-reflective subspaces,
[6], p. 173-175, together with the list of polars by Chen and Nagano,

[2], p. 294. By G#
n/2(R

n) we denote the manifold of oriented balanced

splittings. A balanced splitting of R
n is a set {W,W⊥} where W ⊂

R
n is an n/2-dimensional subspace (n even). An orientation of W

induces an orientation of W⊥. Any balanced splitting {W,W⊥} can

carry two possible orientations, thus G#
n/2(R

n) is a two-fold covering

of the space Ḡn/2(R
n) of all splittings {W,W⊥}. The usual unoriented

Grassmannian Gn/2(R
n) is another two-fold covering of Ḡn/2(R

n) which

is not diffeomorphic to G#
n/2(R

n).
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Type Space dim. Rank “Linear Algebra” Symmetric Spaces

E I E6/Sp4 42 6 “{ĈH
3 ⊂ OC

3}” {G2(H
4)/Z2 ⊂ OCP

2}
E II E6/SU6Sp1 40 4 “{HC

3 ⊂ OC
3}” {G2(C

6) ⊂ OCP
2}

E III E6/Spin10U1 32 2 “{OC
1 ⊂ OC

3}” OCP
2

“{OC
2 ⊂ OC

3}” {Gor
2 (R10) ⊂ OCP

2}
E IV E6/F4 26 2 “{O3 ⊂ OC

3}” {OP
2 ⊂ OCP

2}
E V E7/SU8 70 7 “{ĈHC

3 ⊂ OH
3}” {G4(C

8)/Z2 ⊂ OHP
2}

E VI E7/Spin12Sp1 64 4 “{OH
1 ⊂ OH

3}” OHP
2

“{OH
2 ⊂ OH

3}” {Gor
4 (R12) ⊂ OHP

2}
“{HH

3 ⊂ OH
3}” {Gor

4 (R12) ⊂ OHP
2}

E VII E7/E6U1 54 3 “{OC
3 ⊂ OH

3}” {OCP
2 ⊂ OHP

2}
E VIII E8/Spin16 128 8 “{OO

1 ⊂ OO
3}” OOP

2

“{OO
2 ⊂ OO

3}” {G#
8 (R16) ⊂ OOP

2}
“{ĈHH

3 ⊂ OO
3}” {G#

8 (R16) ⊂ OOP
2}

E IX E8/E7Sp1 112 4 “{OH
3 ⊂ OO

3}” {OHP
2 ⊂ OOP

2}
F I F4/Sp3Sp1 28 4 “{H3 ⊂ O

3}” {HP
2 ⊂ OP

2}
F II F4/Spin9 16 1 “{O1 ⊂ O

3}” OP
2

“{O2 ⊂ O
3}” {S8 = OP

1 ⊂ OP
2}

GI G2/SO4 8 2 {H ⊂ O}
Table 6

8. Concluding remarks

Table 6 has given a strong motivation for this paper. The four
exceptional spaces with dimensions 16, 32, 64, 128 can be consid-
ered in a certain sense as “projective planes” (Rosenfeld planes) over
A = O, OC, OH, OO where O denotes the octonian algebra. However,
A

3 is not a module over A, by lack of associativity. Therefore there
are no submodules in A

3, and the inclusion sets in quotation marks do
not really exist. But the last column of the table does make sense: All
exceptional symmetric spaces (but the last one) are spaces of reflective
submanifolds in Rosenfeld planes. In order to see the analogy we have
represented the classical spaces in the same fashion.

However, the relation between the last two columns is not as strict as
we would wish. E.g. in the E VI case, the inclusion set “{HH

3 ⊂ OH
3}”

should be the same as {HHP
2 ⊂ OHP

2}. But we have HHP
2 = G4(R

12)
(cf. Table 3) while the reflective submanifold of OHP

2 is Gor
4 (R12),

according to Leung and Chen-Nagano [6, 2]. Further, by analogy,
one would think that the projective line over A = KL is Gor

k (Rk+l).
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This is true for A = KR where AP
1 = Sk and it holds also for

A = CC, CH; note that Gor
2 (R4) = S2 × S2 and Gor

2 (R6) = G2(C
4).

But HHP
1 = G4(R

8) is different: it is the unoriented Grassmannian
(cf. Table 3). On the other hand, the oriented Grassmannian Gor

4 (R8)
is a reflective submanifold of OHP

2 (cf. Table 6). Further, the reflec-
tive submanifolds corresponding to “{OL

2 ⊂ OL
3}” for L = C, H, O

are Gor
2 (R10), Gor

4 (R12) and G#
8 (R16), respectively. Again, the H-case is

different. For the submanifolds corresponding to ĈH
3, ĈHC

3, ĈHH
3 we

have no geometric interpretation yet. We expect that Vinberg’s formula
([1], p.192) which holds for A = KL with K, L ∈ {R, C, H, O} can be

extended to the non-associative algebras A = ĈH ⊂ OC, ĈHC ⊂ OH,
ĈHH ⊂ OO.
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