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Abstract. An important tool for studying pluriharmonic maps
with values in compact symmetric spaces is the spectral family,
which comes in several versions: extended solutions, extended
frames and associated families. In this paper we describe the rela-
tions between these notions.

1. Introduction

What is an integrable system? Although this notion seems a bit
vague, one of the common features is that the differential equation
allows for a one-parameter deformation, depending on the so-called
spectral parameter λ. This is often introduced in a purely formal way.
It is the purpose of the present article to discuss the geometric mean-
ing of λ in an important case, that of harmonic maps of surfaces and
pluriharmonic maps of complex manifolds with values in Riemannian
symmetric spaces. We shall link the spectral parameter to the associ-
ated family of such maps, which is well known from elementary minimal
surface theory; the most prominent example is the deformation of the
catenoid into the helicoid. In fact, our geometric theory joins two dif-
ferent approaches to (pluri-) harmonic maps: extended solutions and
extended frames.

It is our pleasure to thank Fran Burstall, Emma Carberry and Liviu
Mare for many valuable hints and discussion.

2. Extended solutions and extended frames

The equation of a harmonic map f of a Riemann surface M into
a compact (not necessarily connected) Lie group G with biinvariant
metric or a totally geodesic submanifold S ⊂ G (a symmetric space)
allows for a spectral parameter λ ∈ S1. There are two different ways
to assign to f a λ-dependent map, a so called spectral deformation.

Date: February 25, 2009.
2000 Mathematics Subject Classification. 53C35, 53C43, 22E67.
Key words and phrases. (pluri)harmonic maps, symmetric spaces, associated

families, extended solutions, extended frames.
1



2 J.-H. ESCHENBURG, P. QUAST

The first one goes back to Uhlenbeck [U], motivated by earlier work in
physics [P, ZM, ZS], the second one was introduced by Burstall and
Pedit [BP], see also [DPW].

Uhlenbeck introduced the notion of an extended solution. This is a
family of maps Φλ : M → G depending smoothly on λ ∈ S1 such that
Φ1 is a constant group element,1 and the Maurer-Cartan form2

(1) βλ := Φ−1
λ dΦλ ∈ Ω1(M, g)

satisfies

(2) βλ = (1− λ−1)β′ + (1− λ)β′′

for some β′ ∈ Ω(1,0)(M, gc) and β′′ = β′.3 By [U], a map f : M → G is
harmonic iff there exists (at least locally) an extended solution Φλ with
f = Φ−1. Since the inversion j : G → G, j(g) = g−1 is an isometry of
G for any biinvariant metric, f−1 = j ◦ f is again harmonic, and, up
to left translation, the corresponding extended solution is (cf. [BG])

(3) (TΦ)λ := Φ−λΦ
−1
−1.

The map f may take values in a totally geodesic submanifold S ⊂ G
and can then be considered as a harmonic map into S rather than into
G. In particular we consider a Cartan embedded symmetric space S
which is a connected component of the set of order 2 elements,

√
e = {s ∈ G; s2 = e} ⊂ G,

(standard Cartan embedding) or a left translate of such a set.4

The approach by extended frames in turn uses the projection π :
G → S = G/K rather than a Cartan embedding ι : S → G. Starting
with a map f : M → S, one first chooses a lift (“frame”) F : M → G
with f = π ◦ F ; in fact F may be defined only locally, on some open
subset Mo ⊂ M . If S ⊂ G is standard Cartan-embedded, then G acts
by conjugation, and the relation between F and f is given by

(4) f = FsoF
−1

1Often one assumes Φ−1 = e (unit element in G) but we would like to make the
notion independent under left translations in G.

2Using matrix notation, we write gx for the left translation Lgx (for x ∈ G) as
well as for its differential dLgx (for x ∈ g).

3By Ω(1,0) we denote the space of one-forms ω which are complex linear, ω(JX) =
iω(X) for any X ∈ TM , while its complex conjugate ω̄ ∈ Ω(0,1) is anti-linear,
ω̄(JX) = −iω̄(X).

4A standard Cartan embedding (
√
e)o, i.e. a connected component of

√
e, may or

may not be contained in the identity component Go of G. Using a left translation
in G it can be shifted into Go. If one uses the left translation by so for some
so ∈ (

√
e)o, then so(

√
e)o = {sos; s ∈ (

√
e)o} is called pointed Cartan embedding.
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for some so ∈
√
e (which is the point reflection at o = eK ∈ S).

Let α = F−1dF ∈ Ω1(Mo, g) be the corresponding Maurer-Cartan
form. We decompose α = αk + αp according to the Cartan decompo-
sition g = k + p corresponding to Ad(so), i.e. Ad(so) = I on k and
Ad(so) = −I on p. Then f is harmonic iff the modified one-form

(5) αλ = αk + λ−1α′p + λα′′p

is integrable, i.e.

(6) αλ = F−1
λ dFλ

for some smooth map Fλ : Mo → G depending smoothly on λ ∈ S1

with F1 = F ; this is called an extended frame. Moreover, all maps
fλ := π ◦ Fλ : Mo → S are harmonic.

Both approaches have been extended from harmonic maps of surfaces
to pluriharmonic maps of Kähler manifolds, cf. [OV] for Uhlenbeck’s
theory and [DE] for the extended frame method. A map f on a Kähler
manifold5 M is called pluriharmonic if its restriction to any complex
curve in M is harmonic, or, in more technical terms, if its Levi form
Ddf (1,1) (the (1,1) part of its hessian) vanishes. Everything we have said
remains unchanged after replacing the word “harmonic” everywhere by
“pluriharmonic”.

The two approaches are related to each other by the following

Theorem 1. Let f : M → S ⊂ G be a pluriharmonic map where
S = G/K is (standard) Cartan embedded into G. Let F : Mo → G be
a local frame for f , i.e. f = π ◦F = FsoF

−1. Then extended solutions
and extended frames for f are related by

(7) Fλ = ΦλF.

More precisely, suppose that two families of maps Fλ,Φλ : Mo → G,
λ ∈ S1, satisfying (7), are given. Then Fλ is a an extended frame for
f if and only if Φλ is an extended solution for f .

Proof. Differentiation of (7) yields

(8) αλ = F−1βλF + α

where αλ = F−1
λ dFλ, α = α1 = F−1dF and βλ = Φ−1

λ dΦλ. Using (4)
we relate f to α:

(9) f−1df = F (soαso − α)F−1 = −2α̃

5In fact it suffices that M is a complex manifold; locally we may always choose
a Kähler metric and the notion of pluriharmonicity is independent of the choice of
that metric.
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where

(10) α̃ := FαpF
−1;

remind that so(αk + αp)so = αk − αp.

Now suppose that Fλ is an extended frame for f . Then from (5) and
(8) we obtain

(11) βλ = F (αλ − α)F−1 = (λ−1 − 1)α̃′ + (λ− 1)α̃′′.

Thus βλ = Φ−1
λ dΦλ satisfies (2) with β = −α̃. In particular, β1 = 0,

hence Φ1 = const, and

(12) Φ−1
−1dΦ−1 = β−1 = −2α̃

(9)
= f−1df

whence Φ−1 = f up to a left translation. Thus Φλ is an extended
solution for f .

Vice versa, suppose that Φλ is an extended solution for f = Φ−1.
Let Fλ = ΦλF and αλ = F−1

λ dFλ. From (8) and (2) we obtain

(13) αλ − α = F−1βλF = (1− λ−1)β̃′ + (1− λ)β̃′′

where

(14) β̃λ = F−1βλF.

We show first that the right hand side of (13) takes values in (the
complexification of) p. In fact, from (9) we have on the one hand

(15) F−1(f−1df)F = −2αp,

and on the other hand, by (2) for λ = −1 and (14),

(16) F−1(f−1df)F = F−1(Φ−1
−1dΦ−1)F = F−1β−1F = 2β̃.

Thus

(17) β̃ = −αp ∈ p,

and hence αλ − α takes values in p, cf. (13). This implies that the
k-components of αλ and α are the equal. But (13) shows more:

(αλ)p = −β̃ + (1− λ−1)β̃′ + (1− λ)β̃′′

= −λ−1β̃′ − λβ̃′′
= λ−1α′p + λα′′p ,

hence we have proved (5). �
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3. Associated families

We want to outline a third approach [ET2] which gives a geometric
interpretation of both extended solutions and extended frames in a sin-
gle theory. The starting point is the observation that a pluriharmonic
map f allows a one-parameter deformation of pluriharmonic maps fλ,
the so called associated family.

It has already been observed by Weierstraß that minimal surfaces
in euclidean space come in one-parameter families, so called associated
families. The best known example is the deformation of the catenoid
into the helicoid where we cut the catenoid along a vertical meridian
and then move the two ends of the cut upwards and downwards apart
from each other.6 Starting with a surface f , the associated family is an
isometric deformation fθ with three properties, shown in the pictures:

• Up to parallel translation, each tangent plane remains unchanged
during the deformation,
• Principal curvatures are preserved while principal curvature

lines rotate,
• The deformation is periodic, fθ+2π = fθ, and after a half period
π we see the same object in opposite orientation.

In fact, denoting by Rθ the rotation by the angle θ in the tangent plane
of the surface, the above properties are expressed by

(18) df ◦ Rθ = dfθ.

One may ask which (other) surfaces f : M → Rn allow an associated
family (18). It is enough to consider the 90o rotation J = Rπ/2 since

(19) Rθ = (cos θ)I + (sin θ)J.

We need to find a map g : M → Rn with

df ◦ J = dg.

If M is simply connected (which we will always assume), this is equiv-
alent to

d(df ◦ J) = 0.

From df = fxdx+ fydy we see df ◦ J = fydx− fxdy and hence

d(df ◦ J) = fyydx ∧ dy − fxxdy ∧ dx = ∆f dx ∧ dy

where ∆f = trace Ddf = fxx + fyy is the Laplacian. Hence an associ-
ated family exists iff f is harmonic, ∆f = 0. In particular this applies
to minimal surfaces which are just conformal harmonic maps.

6http://page.mi.fu-berlin.de/polthier/Calendar/Kalender86/Kalender86.htm
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Now we replace euclidean space Rn by an arbitrary symmetric space
S = G/K. Furthermore we replace the surface by a Kähler manifold
M , i.e. a Riemannian manifold with a parallel almost complex struc-
ture J . We can still define the parallel tensors Rθ by (19) and ask
the following question: Given a smooth map f : M → S, what is the
condition that the one-form df ◦ Rθ is integrable, i.e. the differential
of a map fθ? To make this question more precise recall that dfx is
a linear map from TxM to Tf(x)S and hence it defines a bundle map
df : TM → f ∗TS. Thus (18) has to be modified since f ∗θTS and
f ∗TS are different vector bundles. What we need is an isomorphism
Φθ between these bundles such that

(20) dfθ = Φθ ◦ df ◦ Rθ,

where the isomorphism Φθ : f ∗TS → f ∗θTS, like parallel translation in
euclidean Rn, preserves the metric and the Lie triple structure (curva-
ture tensor) on TS and is parallel with respect to the induced connec-
tions on f ∗TS and f ∗θTS. A family of pairs (fθ,Φθ) with f0 = f , Φ0 = I
satisfying (20) will be called an associated family for f : M → S.

In [ET1], the question has been discussed in a more general setting:
Let there be a vector bundle E →M and an E-valued one-form (bundle
homomorphism) ϕ : TM → E. Suppose that the fibres of E carry a
connection ∇ and a parallel Lie triple structure RS on the fibres which
is isomorphic to the Lie triple structure of a Riemannian symmetric
space S. When does there exist a smooth map f : M → S with
df = ϕ, using a suitable isomorphism Φ : f ∗TS → E? The answer
was given in [ET1]: f exists and is unique up to isometries of S if and
only if d∇ϕ = 0 and R∇ = ϕ∗RS. The proof is an application of the
Frobenius integrability theorem. Applying this theory to ϕθ = df ◦ Rθ
one obtains

Theorem 2. [ET2] Let M be a Kähler manifold, S a compact sym-
metric space and f : M → S a smooth map. There exists an associated
family (fθ,Φθ) for f (unique up to isometries of S) if and only if f is
pluriharmonic.

In this case, Φθ is an isometric bundle isomorphism between f ∗TS
and f ∗θTS (i.e. it maps Tf(x)S isometrically onto Tfθ(x)S for any x ∈M)
which is parallel and preserves the curvature tensor RS of S. Thus
Φθ(x) is the differential of an isometry7 of S. Since an isometry is

7If S is not simply connected, this in not true in general, but it is true for the
identity component of the isometry group; note that Φθ(x) can be connected to
Φ0(x) = I.
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uniquely determined by its differential at a single point, Φθ may be
viewed as an element of the isometry group G of S.

In [DE] the connection to the extended frames was given:

Theorem 3. [DE] Let f : M → S = G/K be pluriharmonic with
(local) frame F : Mo → G and associated family (fλ,Φλ). Put λ = e−iθ.
Then

(21) Fλ = ΦλF

is an extended frame in the sense of [BP, DPW].

The idea of the proof is as follows. We have to show that αλ = F−1
λ dFλ

satisfies (5). We split αλ = αλk +αλp . The property αλk = αk is obtained
as follows. From (8) we have

(22) αλ − α = F−1βλF

and the right hand side of (22) takes values in p, due to the parallelism
of Φλ (see subsequent Lemma). Moreover, dπ(Fλα

λ
p ) = dfλ where π :

G → G/K is the projection, and dfλ = Φλ ◦ df ◦ R−θ. Since T ′M and
T ′′M are the ±i eigenspaces of J and the e∓iθ eigenspaces of R−θ, we
have df ◦ R−θ = λ−1d′f + λ d′′f which shows (5). �

Lemma 1. Let f, f̃ : M → S = G/K be smooth maps and Φ : f ∗TS →
f̃ ∗TS an isometric bundle isomorphism preserving RS. Then Φ is par-
allel iff F−1(Φ−1dΦ)F takes values in p for any frame F of f .

Proof. Let x(t) be any smooth curve in M with x(to) = xo fixed. Con-

sider the curves c(t) = f(x(t)) and c̃(t) = f̃(c(t)) in S. Then Φ is
parallel iff Φ(t) := Φ(x(t)) maps parallel frames along c onto paral-
lel frames along c̃. Parallel frames along a curve c in S = G/K are
the horizontal lifts C of c where horizontal subspaces in TG are left
translates of p. In other words, C(t) ∈ G with π ◦ C = c where
π : G → G/K, and C(t)−1C ′(t) ∈ p. Likewise,8 C̃(t) = Φ(t)C(t) is
horizontal iff C̃(t)−1C̃ ′(t) ∈ p. But

C̃ ′ = (ΦC)′ = Φ′C + ΦC ′

8Again we consider Φ(t) as an element of G. A similar identification takes place
for frames: Strictly speaking, a frame C(t) at p = f(x(t)) is a basis of TpS which
arises by applying some g ∈ G (more precisely: its differential dgo) to a fixed basis
e1, . . . , en of ToS where o = eK ∈ G/K. Usually we identify C(t) with g. The
equality C̃(t) = Φ(t)C(t) can be understood in two ways, linked by the chain rule:
either both C̃(t) and C(t) are considered as n-tuples of tangent vectors, mapped
onto each other by the homomorphism Φ(t), or C̃(t),Φ(t), C(t) ∈ G and the right
hand side is a product of group elements. We shall adopt the second view point.
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and therefore

C̃−1C̃ ′ = (ΦC)−1(ΦC)′ = C−1Φ−1Φ′C + C−1C ′

The second term on the right hand side lies in p, due to horizontality of
C. Thus C̃ is horizontal iff C−1Φ−1Φ′C ∈ p. Choosing C(to) = F (xo)
we have proved our claim. �

From theorems 1 and 3 we obtain:

Theorem 4. Let S ⊂ G be a Cartan embedded symmetric space and
f : M → S pluriharmonic with associated family (fλ,Φλ). Then Φλ is
an extended solution of f .

Thus the theory of associated families (fλ,Φλ) combines aspects of
both theories: Φλ is the extended solution and Fλ = ΦλF the extended
frame with π ◦ Fλ = fλ. Moreover we have achieved a geometric in-
terpretation of Φλ which persists if no embedding of S into G is given:
Φλ is the isomorphism between the bundles f ∗TS and f ∗λTS which one
needs to define the associated family, cf. (20).

Note that a solution (fλ,Φλ) of (20) for any single λ is unique up to
left translation with some gλ ∈ G. In particular, for λ = −1 or θ = π
we have Rπ = −I and thus (f−1 = f, Φ−1 = −I) is a special solution
with Φ−1(x) = sf(x) ∈ G (geodesic reflection at the point f(x)). Thus
a general solution will be a left translate of this map, and hence we see
immediately that Φ−1 is the composition of f with a Cartan embedding
(which follows also from Theorem 3).

4. Totally geodesic submanifolds in Lie groups

So far, we have linked extended solutions, extended frames and asso-
ciated families only when the symmetric space S is Cartan embedded
in a Lie group G. But all three theories extend beyond this case. Ex-
tended solutions Φλ take values in a compact Lie group G and f = Φ−1

may lie in any closed totally geodesic submanifold S ⊂ G (not only Car-
tan embeddings), while extended frames and associated families do not
make use of embeddings of S at all. So let us assume that S ⊂ G is
a general closed totally geodesic submanifold and f : M → S ⊂ G a
pluriharmonic map. Is there still a relation between extended solutions
Φλ and extended frames Fλ of f? This seems unclear because Φλ and
Fλ take values in different groups: While Φλ is G-valued, Fλ maps into
the transvection group of S which now will be called H (rather than
G).

But there is a link between the two groups: H is finitely covered
by the group of the transvections of G keeping S ⊂ G invariant. The
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group G×G acts on G by left and right translation, (g1, g2)g = g1gg
−1
2 ,

and this action (after dividing out the ineffective diagonal of the center)
is the transvection group of G. In fact, by definition a transvection on
G is the composition of any two point reflections sg, sg̃ for g, g̃ ∈ G.
We have sg(p) = gp−1g and hence

(23) sg(sg̃(p)) = g(g̃p−1g̃)−1g = gg̃−1pg̃−1g

for any p ∈ G. Thus sgsg̃ is the action on G of (gg̃−1, g−1g̃) ∈ G×G.
If S ⊂ G is a closed totally geodesic submanifold, the transvections

along S are just restrictions to S of the transvections sgsg̃ with g, g̃ ∈ S.
Thus the transvection group H of S is finitely covered by the group
H̃ ⊂ G×G generated by the set

(24) Γ = {(gg̃−1, g−1g̃); g, g̃ ∈ S} ⊂ G×G.

The extended frames Fλ of a pluriharmonic map f : M → S take
values in H. They will be lifted to H̃ and then called F̃λ. Thus F̃λ
and Φ̃λ = F̃λF̃

−1
1 take values in H̃. Since Φ̃−1(x) acts on S as sosf(x)

for a fixed o ∈ S, we may assume Φ̃−1(x) = (of(x)−1, o−1f(x)) for all
x ∈M .

On the other hand, we have the Uhlenbeck extended solution Φλ :
M → G with Φ−1 = f : M → S ⊂ G. Embedding S totally geodesi-
cally into H̃ ⊂ G×G via9

(25) io : S 3 g 7→ (og−1, o−1g) ∈ Γ ⊂ H̃ ⊂ G×G,

we obtain a pluriharmonic map io ◦ f = (of−1, o−1f) : M → G × G.
This is a left translate in G×G of the pluriharmonic map (f−1, f) with
the extended solution

(26) Φ̂λ = ((TΦ)λ,Φλ),

cf. (3). Thus we have two extended solutions Φ̃λ, Φ̂λ for (left translates
of) io ◦ f which by unicity must agree up to left translations in G×G.
We have proved:

Theorem 5. Let S ⊂ G be totally geodesic submanifold and f : M → S
a pluriharmonic map. Then G-valued extended solutions Φλ and H-
valued extended frames Fλ for f correspond in the sense

(27) ((TΦ)λ,Φλ) = F̃λF̃
−1
1

up to left translations in G×G, where F̃λ is a lift of Fλ to H̃ ⊂ G×G.

9io is a lift to H̃ of the pointed Cartan embedding ιo : S → H, p 7→ sosp.
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Remark. If S ⊂ G is standard Cartan embedded, i.e. S = (
√
e)o,

then Γ = {(ss̃, ss̃); s, s̃ ∈ (
√
e)o} ⊂ ∆G ⊂ G × G, see (24). On the

other hand an extended solution Φλ with Φ−1 ∈
√
e can be chosen to be

invariant under the twist T defined in (3), cf [BG], hence Φ̂λ = (Φλ,Φλ).
Thus we are back to Theorem 4 in this case.
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