
PLURIHARMONIC MAPS AND SUBMANIFOLDS

J.-H. ESCHENBURG

Abstract. The following notes contain a slightly extended ver-
sion of four lectures given in the Differential Geometry Seminar at
Osaka City University on March 12 and 13, 2009. We reported on
various approaches to pluriharmonic maps, twistor theory and the
DPW method and we discussed recent applications to submanifold
geometry
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1. Introduction

A (simply connected) Kähler manifold M allows for a family of par-
allel rotations Rθ on its tangent bundle, namely multiplication by the
complex scalars eiθ. Given a smooth map f : M → S into some sym-
metric space S = G/K, one may ask when df ◦ Rθ is the differential
of another map fθ. When S has semi-definite curvature operator (e.g.
when S is compact or dual to a compact symmetric space), this holds
if and only if f is pluriharmonic,1 i.e. the (1, 1) part of its hessian van-
ishes, (∇df)(1,1) = ∇′′d′f = 0. Then (fθ)θ∈[0,2π] is called associated
family of f . Equating df ◦ Rθ with dfθ needs an identification of the
two tangent spaces Tf(x)S and Tfθ(x)S by an element Φθ(x) ∈ G. This
defines a smooth map Φ : S

1 ×M → G, the so called extended solution
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(introduced by Uhlenbeck [U]). Further, if a frame F for f is given,
i.e. a smooth map F : M → G with f = π ◦ F for the projection
π : G → G/K, then Fθ = ΦθF is a frame for fθ, and the family of
maps (Fθ) is called an extended framing of f , [BP, DPW]. Extended
solutions and extended framings are two different descriptions of pluri-
harmonic maps. We shall discuss the advantages of both notions in
various applications.

Extended framings take values in the twisted loop group ΛσG.
There is some freedom in the choice of F which is fixed by passing
to the quotient space Ẑ = ΛσG/K where σ is the involution of G

corresponding to the symmetric space S = G/K. We may view Ẑ
as universal twistor space: Every pluriharmonic map f is the projec-
tion of a holomorphic and “superhorizontal” map f̂ : M → Ẑ. The
complexified loop group ΛσG

c acts on Ẑ preserving the holomorphic
structure as well as the superhorizontal distribution. Applied to f̂ ,
these transformations give new pluriharmonic maps which are called
dressing transformations of f .

An important special case happens when the associated family is
constant, fθ = f (isotropic case). Then f̂ takes values in a finite di-
mensional complex homogeneous subspace of ΛσG/K, a twistor space.
We will discuss this notion in detail. There are two special cases where
all isotropic pluriharmonic maps can be written down explicitly: when
S is a complex Grassmannian or a quaternionic symmetric space (Wolf
space). For all other compact symmetric spaces S, superhorizontality
is a complicated nonholonomic condition, and the general solution is
unknown.

The general (non-isotropic) case can be solved by the DPW method
(Dorfmeister-Pedit-Wu [DPW]). However, its application is substan-
tially more difficult than in the surface case (dimCM = 1) since in
higher dimensions it requires solving the complex curved flat condition:
Finding all closed pc-valued one-forms η with [η, η] = 0, where g = k+p

is the Cartan decomposition of g = Lie(G) corresponding to the sym-
metric space S and pc = p ⊗ C. The general solution of this problem
seems to be unknown.

Extended solutions take values in the based loop space ΩG = {ω :
S

1 → G; ω(1) = e}. One striking application of extended solutions
is a reduction of a large class of pluriharmonic maps to the isotropic
case: pluriharmonic maps of finite uniton number, where Φ is a rational
function of λ = e−iθ, i.e. its Fourier series in λ is finite. By a theorem of
Uhlenbeck and Ohnita-Valli [U, OV], this holds always if M is compact.
Burstall and Guest [BG] have shown that Φ can be deformed to an
isotropic extended solution Φ∞ (where the loops Φ∞(x) : S

1 → G are
group homomorphisms) using the energy flow on ΩG which acts by
real parameter shift ω 7→ ωt with ωt(λ) = ω(tλ). If S ⊂ G is a Cartan
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embedded inner symmetric space, then pluriharmonic maps f : M → S
correspond to extended solutions Φ with Φ−1 = f . The theory has to
be slightly modified for outer symmetric spaces [EMQ]. In both cases
one obtains a classification of pluriharmonic maps f by certain isotropic
pluriharmonic maps f∞ in the closure of the extended dressing orbit
of f .2

Pluriharmonic maps are useful for submanifold theory in various
ways. By a classical theorem of Ruh and Vilms, a surface isometrically
immersed in euclidean 3-space has constant mean curvature (CMC) iff
its (S2-valued) Gauss map is harmonic. What are the Kähler subman-
ifolds in euclidean n-space whose (Grassmann-valued) Gauss map is
pluriharmonic? They have parallel pluri-mean curvature, “PPMC”, i.e.
∇α(1,1) = 0, where the pluri-mean curvature α(1,1) collects the dzidz̄j-
components of the second fundamental form α. Examples are rare. The
only examples known so far are CMC surfaces in R

3 or S3, plurimini-
mal submanifold (where α(1,1) = 0), and extrinsic hermitian symmetric
spaces (where ∇α = 0). It can be shown [EKT] that further examples
must have high codimension.

CMC surfaces in euclidean 3-space yet enjoy another property: They
can be computed from their (harmonic) Gauss map, using the associ-
ated family. This was discovered by Bonnet and restated differently by
Bobenko, using a result of Sym, and it is often called Sym-Bobenko for-
mula. Can one obtain PPMC submanifolds from their (pluriharmonic)
Gauss map by a generalized Sym-Bobenko formula? Unfortunately this
is not true. However, there is a generalization of this formula where
the sphere S

2 is replaced by any hermitian symmetric space of com-
pact type, but it leads to a new class of Kähler submanifolds [EQ]
which share many properties of CMC surfaces; one might call them
“pluri-CMC”.

We wish to thank Osaka City University for hospitality and all par-
ticipants of the seminar for their kind attention and discussion.

2. Associated families

In a first differential geometry course we learn about isometric de-
formations of surfaces. A standard example is the deformation of the
catenoid into the helicoid. You can approximate this deformation by a
strip of paper or a belt, bent to a cylinder representing a neighborhood
of the equator of the catenoid. Pulling the end appart up and down,
you obtain a left or right helix, depending on which side you move up,
and putting the two motions together in reversed order, you come back
to the cylinder but turned inside out. Such isometric deformation,
called associated family, exists for each minimal surface in euclidean

2The action of the loop group has to be extended by the parameter shifts λ 7→ µλ,
µ ∈ C

∗. This is one half of the extension to the corresponding Kac-Moody group.
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3-space. During the deformation the metric, the normal vector and the
principal curvatures are preserved while the principal curvature vectors
rotate.

Let’s discuss this construction in more generality. Given an open,
simply connected subset M ⊂ C = R2 and a smooth map f : M → R

n,
we consider the multiplication by eiθ on M , i.e. the rotation

Rθ = I cos θ + J sin θ (1)

where J is the multiplication by i =
√
−1 (90o-rotation), and we ask

ourselves: Does there exist a smooth map fθ : M → R
n such that

dfθ = df ◦ Rθ (2)

holds? Obviously this is true iff d(df ◦Rθ) = 0. By 1 it suffices to check
d(df ◦ J) = 0. But

(df ◦ J)e1 = df.e2 = fy,
(df ◦ J)e2 = −df.e1 = −fx,

hence d(df ◦ J) = 0 ⇐⇒
0 = d(fydx − fxdy) = (fyy + fxx)dy ∧ dx

⇐⇒ ∆f = 0, i.e. iff f is harmonic. Since a minimal surface in R
n is

a conformal harmonic map, we obtain associated families for minimal
surfaces.

The same argument works for a simply connected open subset M
in C

n rather than in C. Then an associated family (2) exists ⇐⇒
fxkxk

+ fykyk
= 0 for k = 1, . . . , n. Such maps are called pluriharmonic.

Now we want to replace M by an arbitrary simply connected Kähler
manifold and euclidean space by a Riemannian symmetric space S =
G/K. Let f : M → S be a smooth map. When does there exist a
family of maps fθ : M → S with dfθ = df ◦Rθ? Yet this does not make
sense since (dfθ)x and dfx would take values in different tangent spaces
Tf(x)M and Tfθ(x)M . We need an isomorphism Φθ(x) : Tf(x)M →
Tfθ(x)M in order to identify the two tangent spaces. In euclidean space
this is just parallel translation, and for a symmetric space S = G/K
our isomorphism is supposed to have similar properties:

(1) Φθ(x) ∈ G (as acting on TS), for all x ∈ M ,
(2) Φθ ∈ Hom(f ∗TS, f ∗

θ TS) is parallel, ∇Φθ = 0.

The last equation ∇Φθ = 0 is equivalent to

g−1Φ−1
θ dΦθg ∈ p (3)

where g ∈ G with f(x) = gK ∈ G/K and g = k + p is the Cartan
decomposition corresponding to S.

Definition. An associated family for a smooth map f : M → S =
G/K is a circle of pairs (fθ, Φθ), θ ∈ [0, 2π], with fθ : M → S and
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Φθ ∈ Hom(f ∗TS, f ∗
θ TS) satisfying properties 1 and 2 above, such that

dfθ = Φθ ◦ df ◦ Rθ. (4)

A smooth map f : M → S is called pluriharmonic if f |C is harmonic
for each complex one-dimensional submanifold C ⊂ M , or equivalently,
if the (1, 1) component of its hessian vanishes, ∇df (1,1) = ∇′′d′f = 0.3

Theorem 2.1. [ET2] Let S be a compact symmetric space or dual to
a compact symmetric space. Then f : M → S has an associated family
if and only if f is pluriharmonic.

The main idea of the proof can be explained best in a broader context
[ET1]. Given a Riemannian manifold M , a vector bundle E → M and
an E-valued one-form ω : TM → E, we ask: Does there exist a smooth
map f : M → S into some symmetric space S with df = ω? If yes, we
must be able to identify f ∗TS with E by a bundle isomorphism Φ ∈
Hom(f ∗TS). In particular, Φ induces on E the metric, the connection,
and the Lie triple product RS of f ∗TS.4 Hence we may assume that
these data are already given on E, and the Lie triple product RS ∈
Hom(⊗3E,E) is parallel with respect to the connection on E.

Theorem 2.2. [ET1] Given ω ∈ Hom(TM,E), there exists a smooth
map f : M → S = G/K and a parallel isometric isomorphism Φ :
f ∗TS → E with

df = Φ ◦ ω (5)

if and only if the Cartan structure equations hold:5

d∇ω = 0, R∇ = ω∗RS. (6)

The solution (f, Φ) of (5) is unique up to motions (elements of G), i.e.
any other solution is (gf, gΦ) for some g ∈ G.

The proof of this theorem is an application of the Frobenius integra-
bility theorem. We want to apply it to ω = df ◦ Rθ. Then (6) implies
pluriharmonicity, but the converse needs a Lemma of Ohnita and Valli
using the definiteness of RS; without this assumption (e.g. in cases of
indefinite metrics) the converse direction is unknown.

Lemma 2.3. [OV] If f : M → S is pluriharmonic and RS positive or
negative semi-definite, then RS(df.X, df.Y ) = 0 for all X,Y ∈ TM .

3For the second definition of pluriharmonicity we need a Kähler metric on M ,
but the first definition shows that the notion is independent of the choice of this
metric.

4The Riemannian curvature tensor RS : ⊗3TS → TS of a symmetric space S

may be considered as a “triple product”, a product with 3 factors, on p = ToS. It
satisfies an additional identity which makes it into a Lie triple product: RS(X,Y )
is a derivation of RS for any two tangent vectors X,Y on S.

5We let d∇ω(X,Y ) = ∇Xω(Y )−∇Y ω(X)−ω[X,Y ] and R∇(X,Y ) = [∇X ,∇Y ]−
∇[X,Y ].
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If (fθ, Φθ) is an associated family of f = f0 and F : M → G a (local)
lift or framing of f , i.e. f = π◦F for the projection π : G → G/K = S,
then Φθ is an extended solution in the sense of [U, OV] and Fθ = ΦθF
an extended framing in the sense of [BP, DPW, O, DE], see [EQ]. From
now on we shall often replace the subscript θ ∈ [0, 2π] by λ = e−iθ ∈ S

1.6

Remark. For λ = 1 we put f1 = f , Φ1 = e. For λ = −1 (θ = π),
we have R−1 = −I, and a solution of (4) is f−1 = f , Φ−1 = −I or
Φ−1(x) = sf(x) ∈ G. More generally, R−λ = −Rλ, and a solution for
−λ is given by f−λ = fλ and Φ−λ = −Φλ = Φλsf . From the unicity
part of Theorem 2.2 we see that an arbitrary solution satisfies

f−λ = gλf, Φ−λ = gλΦλsf (7)

for some gλ ∈ G. This is the twist condition which we have seen at the
beginning for the catenoid deformation.

3. Isotropy and Twistors

A pluriharmonic map f : M → S is called isotropic if fλ = f for all
λ ∈ S

1. Then (4) becomes

df = Φλ ◦ df ◦ Rλ (8)

and in particular, the isometry Φλ(x) ∈ G fixes f(x).

Theorem 3.1. [ET2] If f is isotropic pluriharmonic and full, i.e. its
image is not contained in a proper totally geodesic submanifold of S,
then Φ(x) : λ 7→ Φλ(x) is a group homomorphism from S

1 into the
isotropy group Gf(x) with Φ−1(x) = sf(x). In particular, S = G/K is
an inner symmetric space.

Proof. We decompose the complexified tangent bundle into J-eigen-
spaces, T cM = T ′M + T ′′M with J = i on T ′M and J = −i on
T ′′M . Then Rλ = λ−1 on T ′M , and by (8) we have Φλ = λ on T ′M
(and likewise Φλ = λ̄ = λ−1 on T ′′M). Thus λ is an eigenvalue of
Φλ ∈ End(f ∗TS), and the eigenbundle Eλ contains df(T ′M). Note that
Eλ is parallel since so is Φλ, and the real parallel bundle E1 := Eλ +Eλ̄

contains df(TM). Since f is full, the smallest RS-invariant parallel
subbundle E ⊂ f ∗TS with E1 ⊂ E is the full bundle f ∗TS. Since
Φλ preserves RS, we have Φλ RS

ABC = λ3 RS
ABC for all A,B,C ∈ Eλ.

Similarly we see that all eigenvalues of Φλ on E are odd integer powers
of λ. In particular we have the group law ΦλΦµ = Φλµ. Furthermore
Φ−1 acts as an odd power of −1 on each eigenspace, hence Φ−1 = −I

6Extended solutions and extended framings Φλ, Fλ : M → G are defined by the
λ-dependence of their (1,0) Maurer-Cartan forms αλ∗ = F−1

λ ∂Fλ and βλ = Φ−1
λ ∂Φλ

α′

λ = α′

k + λ−1α′

p,

βλ = (1 − λ−1β′.
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and viewed as a group element, Φ−1(x) = sf(x). In particular, the
symmetry lies in the connected component of K (conjugate to Gf(x)),
thus S = G/K is an inner symmetric space.

Since any two Φ(x1), Φ(x2) are conjugate under parallel displacents
which are elements of G, all Φ(x), x ∈ M are contained in the same con-
jugacy class, the conjugacy class of some homomorphism τo : S

1 → K
with τo(−1) = so. Such homomorphic circles passing through so will be
called a twistors, and their conjugacy classes twistor spaces. Twistors
have been introduced by R. Penrose in order to understand even dimen-
sional manifolds (e.g. spacetimes) by complex methods. When there
is no distinguished complex structure, one has to study the set of all
(compatible) complex structures, the twistor space, which itself is often
a complex manifold. In our case, the twistor space is an adjoint orbit
(see below), hence a complex manifold, and to any τ ∈ Z we assign the
group element τ(π

2
) which is a complex structure on TpS for the fixed

point p of τ , since τ(π
2
)2 = τ(π) = sp = −I on TpS.

Passing from τo to its generator ξo ∈ k with τo(θ) = exp(θξo), we may
view the conjugacy class of τo as the adjoint orbit Z = Ad(G)ξo = G/H
where H is the centralizer of τo or ξo. We have H ⊂ K since H
commutes with τ and in particular with τo(−1) = so.

7 Thus we obtain
the twistor fibration πZ : Z = G/H → G/K = S. It can be viewed
also as the evaluation map

ev−1 : Z ∋ τ 7→ τ(−1) = sp ∈ S ⊂ G

where S is considered as a subset of G (the conjugacy class of so) via
the Cartan embedding S ∋ p 7→ sp ∈ G.

We have gc =
∑

k gk where gk is the eigenspace of ad(ξo) with eigen-
value ki where i =

√
−1. Furthermore, gk ⊂ pc for odd k and gk ⊂ kc

for even k while g0 = h. In the proof of Theorem 2.1 we have seen that
dΦ takes values in the so called superhorizontal bundle E1 determined
by g1+g−1 ⊂ p, and moreover, p is generated by g1+g−1. Such twistors
ξo are called canonical; they are just sums of inverse fundamental roots
without repetition [BR].

Theorem 3.2. [ET2] A full smooth map f : M → S = G/K is
isotropic pluriharmonic if and only if f = πZ ◦ Φ for some canonical
twistor fibration πZ where Φ : M → Z is holomorphic and superhori-
zontal.

In fact, since x 7→ Φ(x) is parallel, it is a horizontal lift of f . Su-
perhorizontality follows from the fact that df takes values in E1, and
holomorphicity follows from (8) for λ = i =

√
−1 since on E1, the

complex structure of Z agrees with Φi.

7In fact, centralizers are connected, thus H is contained in the identity compo-
nent of K.
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Example: Complex Grassmannians S = Gp(C
n) = Un/(Up×Un−p)

Here the twistor space Z is a flag manifold. A flag in C
n can be viewed

in two different ways: as a chain of subspaces W1 ⊂ W2 ⊂ · · · ⊂
Wr = C

n, or else as an orthogonal decomposition C
n = E1 ⊕ E2 ⊕

· · · ⊕ Er, where W1 = E1, W2 = E1 ⊕ E2 etc. A flag manifold Z is
the set of all flags with given dimensions. Denoting by Ek also the
orthogonal projection onto Ek, we may view a flag (E1, . . . , Er) as a

matrix i
r

∑

k=1

kEk ∈ un, and thus the flag manifold becomes an adjoint

orbit in un. The twistor fibration is the map (E1, . . . , Er) 7→ E1 +E3 +
· · · : Z → S (sum of the spaces with odd indices). A map Φ : M → Z
is a “moving flag” W1(x) ⊂ W2(x) ⊂ . . . . It is holomorphic iff all the
moving spaces (vector bundles) Wk are holomorphic, i.e. Wk is locally
spanned by holomorphic functions M → C

n, and it is superhorizontal if
each space Wk differentiates into the next one, ∂Wk ⊂ Wk+1. Now the
following theorem is easy; it shows that each isotropic pluriharmonic
map f : M → Gp(C

n) can be obtained from free holomorphic data:

Theorem 3.3. (F. Burstall, cf. [ET3]) All superhorizontal holomorphic
maps Φ = (W1, . . . ,Wr) : M → Z arise (locally) as follows. Start with
arbitrary holomorphic functions fi : M → C

n and let W1(x) be the
linear span of the vectors fi(x). Let W2 be spanned by the functions fi,
their partial derivatives ∂jfi and maybe further arbitrary holomorphic
functions gk. Let W3 be the span of all these functions spanning W2,
their first partial derivatives and maybe further arbitrary holomorphic
functions hl : M → C

n, and so on.

By Lemma 2.3, the rank of such maps cannot be two high. The
isotropic pluriharmonic maps of maximal rank into complex Grass-
mannians have been classified in [EK].

There is but one other case where all isotropic pluriharmonic maps
can be given explicitly: quaternionic symmetric spaces, cf. [ET3].

4. Finite uniton number

Sometimes, pluriharmonic maps must be isotropic by topological rea-
sons. Theorems of this type for the surface case have been proved long
time ago, starting with the work of Calabi on minimal 2-spheres (see
references in [ET2, ET3]):

Theorem 4.1. If M is a surface of genus 0 and S a sphere or complex
projective space, then all harmonic maps f : M → S are isotropic
pluriharmonic.

Unfortunately, no such theorem is known for higher dimensional M .
But there exists a theorem for a more general class of pluriharmonic
maps, those with finite uniton number. Let us assume that our group
G is a matrix group, G ⊂ Un. Then the extended solution Φλ(x)
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can be developed into a matrix valued Fourier series with respect to
λ, Φλ(x) =

∑

k∈Z
ak(x)λk. The pluriharmonic map f is called of fi-

nite uniton number if its extended solution Φ has finite Fourier series,
Φλ(x) =

∑

|k|≤r ak(x)λk. Clearly this holds if f is isotropic since then

Φλ(x) is conjugate to τo(λ) =
∑

|k|≤r wkλ
k where wk are the (finitely

many) weights of the representation S
1 τ−→ G ⊂ Un.

Theorem 4.2. [U, OV] Let M be compact, simply connected and f :
M → S pluriharmonic. Then f has finite uniton number.

The following theorem was shown by Burstall and Guest [BG] for
inner symmetric spaces S and was extended to outer symmetric spaces
in [EMQ]. It shows that in some sense, pluriharmonic maps of finite
uniton number can be reduced to isotropic pluriharmonic maps.

Theorem 4.3. Any pluriharmonic map of finite uniton number can be
deformed into an isotropic pluriharmonic map.

The deformation is done by the gradient flow of the energy function
on the space Ωalg of based loops8 ω : S

1 → G with finite Fourier series
(“algebraic loops”). We assume that G is equipped with a bi-invariant
metric. Then the energy E : Ωalg → R is defined by E(ω) =

∫

S1 |ω′|2.
By the first variation formula in Riemannian geometry, the critical
points of E are the geodesic loops through e. For or a bi-invariant
metric these are precisely the homomorphims τ : S

1 → G, and thus
the gradient flow lines of E end at homomorphisms. In Riemannian
geometry, one usually wishes to decrease energy, but then most of the
contractible loops would be flowed to the trivial homomorphism τo = e.
Instead we increase energy, following the flow of ∇E rather than of
−∇E. It is a property of the space of algebraic loops [PS] that each
loop lies in a (finite dimensional) domain of attraction (“Bruhat cell”)
for some critical point of E. In fact, the flow is obtained from the group
action of the positive real numbers (0,∞) acting on Ωalg by

(ω(λ), t) 7→ ω(tλ). (9)

We apply this idea to the extended solution Φ : M → Ωalg of a
pluriharmonic map f : M → S ⊂ G of finite uniton number. Due to
the holomorphicity of Φ (cf. next section), its image Φ(M) lies in a
single Bruhat cell, up to some complex subset Σ ⊂ M of codimension
≥ 1. Applying the flow to Φ(x) for any x ∈ M \ Σ, we get extended
solutions for all times t, and the limit for t → ∞ is an isotropic extended
solution which takes values in a critical manifold, the conjugacy class
of some twistor τo (which can be chosen to be canonical).

8“Based” means ω(1) = e ∈ G (unit element)
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5. Loop groups and the universal twistor space

Let S = G/K be a compact symmetric space where G is a matrix
group. Let so ∈ G be the point reflection of S at the base point o = eK
and let σ ∈ Aut(G) be the conjugation by so. The twisted loop group
is the group

Λσ := ΛσG := {γ : S
1 → G; γ−λ = σγλ} (10)

Here the maps γ are arbitrary with certain regularity conditions we may
impose. Now let f : M → S be a pluriharmonic map with extended
solution Φλ and extended framing Fλ = ΦλF1. From the twist condition
(7) we have

F−λ = Φ−λF1

= gλΦλsfF1

= gλΦλF1F
−1
1 sfF1

= gλFλso.

Now we change our extended framing (and our map f) trivially, putting
F̃λ = Fλ(xo)

−1Fλ for some xo ∈ M with f(xo) = o = eK ∈ S. Then

F̃−λ = F−λ(xo)
−1Fλ = soFλ(xo)

−1g−1
λ gλFλso = σ(F̃λ).

Thus the loops F̃(x) : λ 7→ Fλ(x), x ∈ M , are elements of the twisted

loop group Λσ, and we obtain a (locally defined) map F̃ : M → Λσ. We

will now write F for F̃.
F still depends on the choice of the initial frame F1. This can be

changed by an arbitrary map k : M → K since π(F1k) = π(F1). We
remove this ambiguity by passing to the quotient space

Ẑ = Λσ/K

where K denotes the constant loops in Λσ (which must be elements of
K, by the twist condition γ−λ = σ(γλ)). Working modulo K allows
to define F globally on M . The projection π : Λσ/K → G/K is the
evaluation at λ = 1.

Theorem 5.1. [O, DE, E1] A smooth map f : M → S is plurihar-

monic if and only if f = π ◦ F where F : M → Ẑ is holomorphic and
superhorizontal.

We have to explain these notions. The space Ẑ = Λσ/K carries a
complex structure since it can be viewed as a quotient of two complex
groups:

Λσ = Λc
σ/Λ

+
σ (11)

where Λc
σ is the group of twisted loops in the complexified (matrix) Lie

group Gc and Λ+
σ the subgroup of those γ ∈ Λc

σ whose Fourier series
has no negative λ-powers, γ =

∑

k≥0 akλ
k ∈ Λc

σ with a0 invertible. In

fact, the real loop group Λσ ⊂ Λc
σ acts on the complex quotient Λc

σ/Λ
+
σ ,
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and the action is transitive by the Iwasawa decomposition Λc
σ = ΛσΛ+

σ

of Λc
σ, see [PS]. An element γ ∈ Λσ stabilizes the point eΛ+

σ iff γ ∈
Λ+

σ ∩ Λσ = K: observe that γ =
∑

k∈Z
akλ

l is real iff a−k = ak; hence
a−k = 0 for all k ∈ N implies γ = a0, and from the twist condition
γ−λ = σ(γλ) we obtain γ ∈ K.

The Maurer-Cartan form α = F
−1dF of the extended framing F sat-

isfies α′ = λ−1α′
p + α′

k and α′′ = α′ = λα′′
p + α′′

k . Modulo Λ+
σ only the

λ−1-term survives, hence d′′
F = ∂̄F = 0 modulo Λ+

σ (i.e. F : M → Ẑ
is holomorphic) while d′

F = ∂F takes values in the “superhorizontal”

distibution9 Λc
σ(λ−1pc) on Ẑ = Λc

σ/Λ
+
σ .

Due to the similarity of the theorems 2.2 and 4.1, Ẑ could be called
the universal twistor space,

Remark 1. [E1] The universal twistor space, like its finite dimensional
analoga, can be viewed as an adjoint orbit

Ẑ = Ad(Λ̂σ)δ (12)

where Λ̂σ ⊂ Aut(Λσ) is the semidirect product of Λσ with S
1 acting on

Λσ by parameter shift (γλ, µ) 7→ γµλ, and where δ = d/dt for µ = eit is
the infinitesimal generator of the S

1-factor. In fact,

Ad(γ)δ = γδγ−1 = δ + γ(γ−1)˙ = δ − γ̇γ−1,

and Ad(γ)δ = δ ⇐⇒ γ̇γ−1 = 0 ⇐⇒ γ = const ∈ G ∩ Λσ = K.

The extension from Λσ to Λ̂σ is the first step to the corresponding
Kac-Moody-group. Since the second step, a central extension, does
not affect the adjoint action, the universal twistor space can be viewed
as an adjoint orbit of the twisted Kac-Moody group corresponding to
(G, σ).

Remark 2. [DE, E2] Any finite dimensional twistor space Z = G/H,
being the conjugacy class of a twistor τ , is embedded into the universal
twistor space Ẑ by projection of the map

i : g 7→ τgτ−1 : G → Λσ

via the diagram

G

π

��

i
// Λσ

ev1

��

G/H // Λσ/K

where ev1 denotes evaluation at λ = 1.

Remark 3. There is a large group Λc
σ acting on the homogeneous

space Ẑ. The action is holomorphic and preserves superhorizontality.

9We consider λ−1pc as a subspace of TeΛ+
σ

Ẑ, which is invariant under the stabi-

lizer Λ+
σ and hence determines a Λc

σ-invarinant subbundle of T Ẑ, called Λc
σ(λ−1pc).
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hence it induces transformations of a pluriharmonic map f , the so
called dressing transformations. For gλ ∈ Λσ this corresponds to the
congruent associated family gλfλ, but the complex extension Λc

σ yields
new pluriharmonic maps. The dressing action can still be enlarged by
the (arbitrary complex) parameter shifts as in (9).

6. The DPW method

As we have seen, the extended framing F modulo Λ+
σ is a holomor-

phic map [F] : M → Ẑ. Dorfmeister, Pedit and Wu [DPW, O, DE]
constructed a holomorphic local representative H : M → Λc

σ of [F].
To do this, one needs to find some V+ ∈ Λ+

σ such that H = FV+ is
holomorphic, i.e. η′′ = 0 where η = H

−1dH. Since

η = V
−1
+ (α + dV+V

−1
+ )V+ (13)

we have η′′ = 0 iff

∂̄V+ = −α′′
V+. (14)

This equation has a solution Ṽ+ = F
−1, thus the integrability condition

is satisfied, and since α′′ = α′′
k + λα′′

p takes values in the Lie algebra of
Λ+

σ , we find another solution V+ in Λ+
σ as required.

In fact, there are many such η. A distinguished one is the normal-
ized potential with only one Fourier summand η− = η−1λ

−1. This is
obtained from the Birkhoff decomposition of an open dense subset (“big
cell”) of Λc

σ,

(Λc
σ)o = Λ−

σ Λ+
σ (15)

where Λ−
σ contains only Fourier series with negative indices, γλ =

∑

k≤0 akλ
k. Comparing the Birkhoff decompositions H = H−H+ and

F = F−F+ of H and F we notice H− = F− (up to a constant matrix),
using the unicity of (15) (up to constant matrices), since

F−F+ = F = HV
−1
+ = H−H+V+,

Thus η− = H
−1
− dH− takes values in the Lie algebra of Λ−

σ , but by (13),
its Fourier series starts with λ−1 (like the one of α), hence only the
λ−1-term remains.

Now in the Maurer-Cartan equation dη− = [η−, η−] the left and the
right hand sides are multiples of λ−1 and λ−2, respectively, hence both
sides must vanish and we obtain

dη−1 = 0, [η−1, η−1] = 0. (16)

Theorem 6.1. The pluriharmonic maps f : M → S = G/K are in
one-to-one correspondence to closed holomorphic one-forms η on M
with values in pc and [η, η] = 0.

In fact, if such η is given, we put η− = ηλ−1, obtain a holomorphic
map H− = F− by solving ∂H− = H−η− and then recieve F = (Fλ) from
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the Iwasawa decomposition F− = FW+ of F−. Finally we put f = F1

mod K.
While [η, η] = 0 is no condition if M has complex dimension one

(surface case), the general solution of (16) is unknown for higher di-
mensions.

7. Submanifolds with pluriharmonic “Gauss map”

It is well known [RV] that a surface conformally immersed in eu-
clidean 3-space has constant mean curvature (CMC) iff its Gauss map is
harmonic. Can we generalize this to higher dimensions? What are the
Kähler submanifolds in euclidean n-space with pluriharmonic Gauss
map? These are called submanifolds with parallel pluri-mean curvature
(PPMC), i.e. the (1,1) part of the 2nd fundamental form α is parallel
[BEFT]. However, there are only few examples known: CMC-surfaces,
pluriminimal submanifolds and extrinsic Kähler symmetric spaces. It
is known that any other examples must have high codimension [EKT].

In order to obtain new examples one would like to use an “inverse
Gauss map” method which would recover the submanifold from its
Gauss map.10 In the case of CMC surfaces such a method exists, the
so called Sym-Bobenko formula [S, Bb] which computes the CMC im-
mersion from its harmonic Gauss map. This formula can be extended
to higher dimensions [EQ]. However, it does not lead to new PPMC
immersions, but to another class of Kähler submanifolds generalizing
CMC surfaces.11

As was reported in [H], the story of the Sym-Bobenko formula goes
back to Bonnet [Bn], 1853. A classical fact known to Bonnet is that
CMC surfaces come in pairs of conformal parallel CMC surfaces with a
(non-conformal) surface of constant Gaussian curvature in the middle.
More precisely, suppose we have a surface immersion g : M → R

3

with constant Gaussian curvature K = 1 in euclidean 3-space and let
h : M → S

2 ⊂ R
3 be its Gauss map. Let 1/r1, 1/r2 be the two principal

curvatures; from K = 1 we have r1r2 = 1. The principal curvatures of
the parallel surfaces f± = g±h are 1/(ri ± 1), and the mean curvature
of f± is given by

2H± =
1

r1 ± 1
+

1

r2 ± 1
=

r1 + r2 ± 2

1 ± (r1 + r2) + 1
= ±1,

using r1r2 = 1. Furthermore, the induced metrics of f+ and f− are
conformal since their principal curvatures have the same ratio (up to
sign):

(r1 − 1)/(r2 − 1)

(r1 + 1)/(r2 + 1)
=

r1r2 + r1 − r2 − 1

r1r2 − r1 + r2 − 1
= −1

10A general approach to the “inverse Gauss map” method has been given in
[EKMT]

11Everything in this section is common work with Peter Quast [EQ].
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where r1r2 = 1 has been used again.
Maybe it was also known to Bonnet that a conformal surface immer-

sion f : M → R
3 with Gauss map h : M → S

2 ⊂ R
3 has constant mean

curvature H = −1
2
trace dh iff h is harmonic, i.e. ∆h is perpendicular

to the tangent space h⊥:

−2∂vH = ∂v trace dh
= trace ∇vdh
= trace 〈∇vdh, df〉
= 〈trace ∇dh, ∂vf〉
= 〈∆h, ∂vf〉 (17)

where we have used the symmetry of 〈∇dh, df〉 in all three variables
(Codazzi equation).

For the inverse problem, only a harmonic map h : M → S
2 is given,

where M is a simply connected Riemann surface. One looks for a
conformal immersion f = f+ : M → R

3 with Gauss map h and mean
curvature H = 1

2
, or equivalently, for a (non-conformal) immersion g

with Gauss map h and Gaussian curvature K = 1 (where f = g + h).
Bonnet solved this problem as follows:

h : M → S
2 ⊂ R

3 is harmonic ⇐⇒
0 = h × ∆h = h × (hxx + hyy) = (h × hx)x + (h × hy)y (18)

⇐⇒ γ := (h × hy)dx − (h × hx)dy is a closed one form, i.e. γ = dg
for some map g : M → R

3, and it turns out that this g satisfies K = 1
whereever it is an immersion. We can write γ more simply as

γ = h × (dh ◦ j) = J dh j (19)

where j and J are the the complex structures on M and S
2, respectively.

We extend this idea to higher dimensions as follows. The 2-sphere
S

2 ⊂ R
3 = so3 is replaced by a Kähler symmetric space (S, J) with its

standard embedding S ⊂ g which is obtained as follows. A Riemannian
manifold S is Kähler iff there is a parallel almost complex structure J
on TS. At any point p ∈ S, this is a skew adjoint derivation of the
curvature tensor RS,

JRS
XY Z = RS

JX,Y Z + RS
X,JY Z + RS

XY JZ.

In fact, from ∇(JZ) = J∇Z we obtain RS
XY JZ = JRS

XY Z which
also implies RS

JX,JY = RS
XY and hence RS

JX,Y + RS
X,JY = 0. If S is

also symmetric, S = G/K, then any skew symmetric derivation of RS

at o ∈ S generates a one-parameter group of isometries fixing o (the
central S

1 ⊂ K). This is an element of the Lie algebra g of the isometry
group G of S, and the map

S ∋ p 7→ Jp ∈ g
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is called the standard embedding of the Kähler symmetric space S.
Thus S becomes an adjoint orbit in g, and Jp = ad(p) = [p, .] for any
p ∈ S ⊂ g. At the base point o, the tangent and normal spaces are
ToS = p and NoS = k where g = k + p is the Cartan decomposition
corresponding to S.

Theorem 7.1. Let (M, j) be a complex manifold and S ⊂ g be a
standard embedded Kähler symmetric space and h : M → S a smooth
map. Then h is pluriharmonic if and only if the g-valued one-form
(Bonnet form) γ is closed, where

γ = J dh j = [h, dh j]. (20)

The argument is precisely the one of Bonnet as shown above, (18).
As before, if M is simply connected, we obtain a smooth map g :
M → g with γ = dg. Sym12 and Bobenko [S, Bb] constructed g in a
different way, using the extended framing Fθ or the extended solution
Φθ = FθF

−1
0 of the (pluri-)harmonic map h : M → S. Let δ = ∂

∂θ
|θ=0.

This map g̃ := δΦ : M → g will be called Sym map.

Theorem 7.2. “The Sym map integrates the Bonnet form”. More
precisely, let h : M → S be a pluriharmonic map with Bonnet form
γ : TM → g and Sym map g̃ = δΦθ : M → g. Then

γ = dg̃ (21)

Proof. Let hθ be the associated family of h. The group element Φθ(x),
acting on S as Ad(Φθ(x)), maps h(x) onto hθ(x) and dhxRθ onto (dhθ)x,
see (4), where Rθ = cos θ I + sin θ j:

dhθ = Ad(Φθ)dh Rθ, (22)

hθ = Ad(Φθ)h. (23)

Taking the differential of (23) we obtain a second relation for dhθ:

dhθ = Ad(Φθ)
(

ad(Φ−1
θ dΦθ)h + dh

)

.

Comparing with (22) yields

dh(Rθ − I) = ad(Φ−1
θ dΦθ)h.

Taking the θ-derivative δ we obtain

dh j = ad(dg̃)h = −[h, dg̃] = −J dg̃

where we have used δ(Φ−1
θ dΦθ) = δdΦθ = dg̃ since Φ0 = e and dΦ0 = 0.

Thus dg̃ = J dh j = γ.

Starting from any pluriharmonic map h : M → S, we now have
constructed a map f = g + h (in fact two such maps f± = g ± h) with
remarkable properties:

12Sym [S] used the method first in order to construct surfaces of Gaussian cur-
vature K = −1.
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• The map f is a Kähler immersion at all regular points, i.e. the
induced metric on M is Kähler for the given complex structure
j.

• The second fundamental form α of f (at regular points) satisfies

α(v, v) + α(jv, jv) = αS
h(df.v, df.v) (24)

for every v ∈ TM , where αS
p denotes the second fundamental

form of S ⊂ g at the point p ∈ S (here: p = h(x)); in fact

αp(A,B) = [JpA,B] = [[p,A], B].

In the special case S = S
2 we have αS

h(df.v, df.v) = |df.v|2 which
shows that f has mean curvature 2H = trace α = 1. Therefore
we would like to call a Kähler immersion with (24) pluri-CMC.

• We have df(TxM) ⊂ Th(x)S for all x ∈ M . Thus the second
fundamental form α of f splits as α = αT + αN where αT , αN

are the components of α in ThS, NhS, respectively.
• The map f allows an isometric one-parameter deformation fθ,

corresponding to the pluriharmonic maps hθ. The two compo-
nents of the second fundamental form αθ of fθ behave differ-
ently: On T ′M ⊗ T ′M we have

αθ = λ−1αT + λ−2αN (25)

where λ = e−iθ.

The special case where the pluriharmonic map h is isotropic was treated
by P. Quast [Q].
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