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1. Introduction

It is an elementary geometric fact that periodic tilings in dimension
2 and 3 (e.g. crystals) do not allow symmetries of any order different
from 2, 3, 4, or 6. Yet there are diffraction patterns of solids showing 5-
fold and even 10-fold symmetry.1 They belong to solids with aperiodic
quasi-crystalline structure, discovered in the early 80’s [Sh].

Some years before, Richard Penrose [P] discovered possible models
for such quasi-crystals, at least in dimension 2: a class of aperiodic
tilings of the euclidean plane with astonishing properties. As in the case
of periodic tilings they have subtilings of any scale with tiles homothetic
to the original one. There are two types of tiles, two rhombs (a thick
and a thin one) which occur in the regular pentagon; its halves are
the two isosceles triangles displayed above. As shown in the figure,
these triangles come with a subdivision into smaller trangles of the
same shape; the scaling factor is the golden ratio ϕ = 1

2
(
√

5 − 1). The
same subdivisions can also be applied to the small triangles, and when
matching across the border lines is required, there is only one way to
do it:

(To see uniqueness note that the displayed subdivision of the central
triangle is the only one compatible with a subdivision of the one on

1cf. http://www.solid.phys.ethz.ch/ott/staff/beeli/Structural investigation.html
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the right hand side.) By repetition we obtain a subdivision into arbi-
trary small triangles or rhombs. The Penrose tilings have the inverse
property: the triangles (half tiles) can be pieced together to form larger
and larger triangles or rhombs where the small ones subdivide the large
ones as in the above figure, and all large rhombs together form another
Penrose tiling.

In the preceding example2 we can easily find one of these subtilings:
its vertices are the centers of the stars formed by five thick rhombs.
Some of the stars have a fully symmetric neighborhood, either pentag-
onal or star shaped and are surrounded by a chain of thick rhombs;
the centers of these stars form the vertices of another tiling with even

2Generated from http://www.geom.umn.edu/apps/quasitiler/start.html
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larger tiles. The displayed example is one of the two Penrose tilings
with full pentagonal symmetry (centered at the bottom rose); the other
one is given by the subtilings.

It is well known (cf. [dB]) that Penrose tilings arise from the integer
grid in R5 by projection onto a certain affine plane Ea ⊂ R5. More
precisely, there are two-dimensional linear subspaces E1, E2 ⊂ R5 which
are invariant under cyclic coordinate permutations, and we put Ea =
E1 + a for some nonzero a ∈ E2. The tiles arise from the squares with
integer vertex coordinates which lie entirely in the strip E + I5 in 5-
space where I = (0, 1) is the open unit interval and I5 the unit cube in
R5; these squares are projected orthogonally onto Ea. In the present
paper we want to investigate a similar construction replacing 5 by other
numbers, in particular 7. Since this means replacing the pentagon by
the heptagon, we propose to call these patterns Heprose tilings (with
apologies to Professor Penrose). As it will turn out, subtilings of the
same sort still exist in all scales. However, they cut the original tiles into
pieces which are far more complicated than the triangles in Penrose’s
case, and moreover the large tiles are subdivided by the small ones in
many different ways.

We like to thank L. Danzer for valuable hints and discussion.

2. Aperiodic tilings via projection

In euclidean n-space Rn we consider an r-dimensional subspace E
and a parallel affine subspace Ea = E + a, a ∈ Rn with the following
properties:

• E is irrational, i.e. E ∩ Zn = {0},
• Ea is in general position, i.e. there are no points on Ea with

more than r integer coordinates.

We define a tiling TEa on Ea (and hence on E) as follows. An integer
point z ∈ Zn is admissible if z is contained in the strip Σa = Ea + In

where In = (0, 1)n is the open unit cube. An r-dimensional face of
a lattice cube z + In, z ∈ Zn, is admissible if it is contained in Σa,
i.e. all its 2m vertices are admissible. The orthogonal projections of
the admissible r-faces onto Ea are the tiles; it is a nontrivial fact that
these always define a tiling [S]. Since there are only finitely many r-
faces up to translation, we get finitely many types of tiles, not more
than (n

m), and each tile is an r-dimensional parallelogram. These tilings
TEa corresponding to affine subspaces Ea = E + a parallel to E will
be called E-tilings.

Replacing a by a + z for some z ∈ Zn we obtain an equivalent tiling,
i.e. the tilings TEa and TEa+z just differ by a translation. Since no
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integer translation leaves Ea invariant, the tiling TEa has no periods.
However in any ǫ-neighborhood of Ea there are infinitely many integer
points. Let z1, z2 be two such points and put z = z1 − z2, then Ea

is 2ǫ-close to Ea+z and hence the strips Σa and Σa+z will be almost
the same. In other words, for most integer points, the admissability
conditions for Ea and Ea+z will agree and hence the two tilings are
almost the same. Thus TEa has no periods, but is has almost periods.

Now let F ⊂ Rn be another irrational subspace perpendicular to E.
Then the projection of the grid, πF (Zn) is dense in F .3 Thus any two
E-tilings TEa, TEb with b−a ∈ F are almost equivalent. In fact, there
is some z ∈ Zn such that πF (z) is arbitrarily close to b − a and hence
Ea+z is arbitrarily close to Eb. As before we conclude that the two
tilings on Eb and Ea+z are almost the same.

E

E’
z

z

E+z

3. Symmetry of the tiling

Let G be a subgroup of the permutation group Sn of {1, . . . , n} which
acts on Rn by permuting the coordinates: (x1, . . . , xn) 7→ (xσ1, . . . , xσn)

3Claim: πF (Zn) is dense in F for any irrational subspace F ⊂ Rn. In fact,
πF (Zn) is a subgroup of the additive (translation) group of F . Suppose it is not
dense in F . Then its closure is of the form F ′ × ∆ where F ′ is a proper linear
subspace of F and ∆ a discrete group of translations. Thus Zn ⊂ (F⊥ ⊕ F ′) × ∆.
The subspace F⊥⊕F ′ is generated by integer vectors v1, . . . , vp. There is a nonzero
integer solution x of the integer linear system 〈vi, x〉 = 0, i = 1, . . . , p (obtained
by applying elementary transformations). In particular x ⊥ F⊥ and hence x is an
integer vector in F .
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for σ ∈ G. The corresponding permutation matrices are orthogonal
and integer. Thus each g ∈ G preserves the integer lattice and the unit
cube In. Let W ⊂ Rn be a nonzero subspace which is G-invariant and
rational (i.e. spanned by integer vectors) and which is minimal with
respect to these two properties. Such space will be called rationally

irreducible. Then any nonzero G-invariant subspace E ⊂ W will be
irrational unless E = W . In fact, if there is a nonzero integer vector
z ∈ E, the orbit Gz consists of integer vectors and spans a rational G-
invariant subspace E ′ ⊂ E ⊂ W . By rational irreducibility, E ′ = W ,
hence E = W .

While W is rationally irreducible, it may be reducible as a repre-
sentation of G over R. We let E ⊂ W be an irreducible G-invariant
subspace and F its orthogonal complement in W . Then both E and F
are G-invariant and irrational, and any two tilings of Ea and Eb with
a − b ∈ F are almost equivalent in the sense of Section 2.

The diagonal vector

d = (
1

n
, . . . ,

1

n
) =

1

n
e

where e = (1, . . . , 1) =
∑n

j=1
ej, is fixed by any permutation, hence by

G. The affine subspace Ekd = E + kd is in general position for any
k ∈ {1, . . . , n − 1} and preseved by G. The corresponding tiling TEkd

is symmetric under G and all tilings TEkd+a with a ∈ F are almost
equivalent to TEkd, in particular almost G-symmetric.

Important examples are dihedral groups (r = 2) and the ikosahedral
group (r = 3). The dihedral group Dn acts by permutations on the
n vertices of a regular n-gon, hence Dn ⊂ Sn. The ikosahedral group
A5 permutes the 12 vertices, 20 faces and 30 edges of the ikosahedron,
hence A5 ⊂ S12, S20, S30. In the present paper we consider the dihedral
group Dn for prime numbers n; other examples will be treated in [ER].

4. inflation

Now suppose further that E is an eigenspace of a symmetric matrix S
which is integer invertible, i.e. it maps the integral lattice Zn bijectively
onto itself.4 Then S(Ea) = Eb for b = Sa. The set of vertices of TEa

is the Ea-projection of the set Za = Σa ∩ Zn. This is mapped by S
bijectively onto SZa = S(Σa) ∩ Zn. Since S|E is multiplication by a
scalar, the projection of SZa on Eb is congruent up to scaling to the
projection of Za onto Ea, hence the tiling of Ea and its image under S
are congruent up to scaling.

4However in many cases S is somewhat less than integer invertible, see below.
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Further we assume that S is an proper expansion on E⊥ (and a
contraction on E). Then S(Σa) ⊃ Σb and hence SZa ⊃ Zb = Σb ∩ Zn.
Thus TEb with vertex set πEb

(Zb) is refined by a diminution of TEa

with vertex set πEb
(SZa). Conversely, S−1(TEb) is a proper subtiling

of TEa in the sense that the vertices of S−1(TEb) form a subset of the
vertex set of TEa. This phenomenon is called inflation, such a linear
map S will be called an inflation map and S−1(TEb) an inflation tiling

of TEa. In the subsequent figure the situation is drawn for n = 2 and
S = ( 0 −1

−1 1). The eigenvalues of S are −ϕ and Φ where ϕ = 1

2
(
√

5 − 1)
is the golden section and Φ = 1

φ
= ϕ + 1 its inverse, and E is the

(−ϕ)-eigenspace of S.

e2

e

1

a

2

S

b

1

Se

Se

E

E

Σa

1

1 +b

+a

Σa

Σb

S ( )

Now let E ⊂ Rn be an irreducible representation space of a group
G ⊂ Sn as described in Section 3, and assume that there is no other G-
submodule in Rn which is equivalent to E. Then we want the inflation
map S to be G-invariant, i.e. gS = Sg for any g ∈ G. Hence SE = E
and in fact E is contained in an eigenspace of S since ker(S−λI)∩E is
G-invariant. If a tiling TEa is G-invariant, the same holds for S(TEa).

5. Planar tilings with dihedral symmetry

We consider the cyclic permutation α ∈ Sn with αj = j + 1 for all
j = 1, . . . , n mod n. The corresponding linear map A on Rn permut-
ing the coordinates sends (x1, . . . , xn) 7→ (x2, . . . , xn, x1). The matrix
A is diagonalizable over C with eigenvectors vω = (ω0, . . . , ωn−1) ∈ Cn
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where ω is any n-th root of unity, ωn = 1. Apparently Avω = ωvω,
hence ω is the corresponding eigenvalue. The only real eigenvalues are
1 with eigenvector e = (1, . . . , 1) and in case of even n also −1 cor-
responding to the eigenvector f = (1,−1, . . . , 1,−1). All other eigen-
values and eigenvectors come in conjugate pairs, and thus the real and
imaginary parts of vω span an A-invariant 2-plane Ek ⊂ Rn on which
A acts by rotation with rotation angle 2πk/n. We identify Ek with the
complex plane C by assigning

(1) Re vω 7→ 1, Im vω 7→ i =
√
−1.

With this identification, A|Ek
becomes the multiplication by ω = ωk =

e2πik/n, hence πkej is identified with ωj = ωkj, where πk is the orthog-
onal projection onto Ek.

We have the orthogonal decomposition Rn = D + E1 + · · · + Em

where m = [n−1

2
] and D is spanned by e and (if present) f .

The permutation α generates the cyclic group Cn of order n. The
dihedral group Dn is the extension of Cn by the permutation β : j 7→
n− j. Let B be the corresponding linear map on Rn. Then apparently
Bvω = vω, and thus the A-invariant planes Ek are also B-invariant
for k = 1, . . . ,m. Hence the Ek are irreducible and inequivalent Dn-
modules (even after complexification).

The generalized Penrose tilings (“n-rose tilings”) arise as follows.
Let E = E1 and F = E2 + · · ·+Em. For any a ∈ F we put Ea = E +a
where E := E1. As described above, the tiles are the orthogonal Ea-
projections of all unit squares with integer vertices in the strip Σa =
Ea + In where I = (0, 1).

We restrict our attention to the case where n is a prime (cf. [ER]
for the the composite case). The group Dn has the fixed vector e but
this is not in W := e⊥ = E + F . However, if we put d = k

n
e for some

k ∈ {1, . . . , n−1}, then a = d−(e1+ · · ·+ek) ∈ W , and the tilings TEd

and TEa are equivalent. Thus we find n− 1 tilings with Dn-symmetry.
Since n is prime, the space W is rationally irreducible for Dn and by
the results of Section 2, any two such tilings are almost equivalent.5

5The rational irreducibility of W is seen as follows. Let W c and Ec
k be the

complexifications of W and Ek. The 2-dimensional subspaces Ec
k are inequivalent

Dn-modules. Thus any Dn-module W1 ⊂ W is a sum of some of the Ek. On the
other hand, a nonzero rational vector v =

∑
λωvω ∈ W c ∩ Qn has only nonzero

coefficients, λω 6= 0 for all ω. In fact, since v is rational and vω ∈ Kn where
K = Q(ω) (i.e. the smallest field containing Q and the n-th unit roots), we may
assume that all λω ∈ K. Now v ∈ Qn iff vσ = v for all σ ∈ GK where GK denotes the
Galois group of K over Q. Each σ ∈ GK is of the type ω 7→ ωk for k ∈ {1, . . . , n−1}.
Hence vσ =

∑
ω λσ

ωvωk , and vσ = v iff (λω−k)σ = λω for all ω. Hence, if λω 6= 0 for
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6. Dihedral integer matrix invariants

As before, let n = 2m+1 be a prime and consider the dihedral group
Dn ⊂ Sn generated by the permutations α, β ∈ Sn with αj = j +1 and
βj = n− j for all j = 1, . . . , n mod n. It acts on Rn by permuting the
coordinates; the corresponding integer orthogonal matrices are denoted
A,B. For any l ∈ {1, . . . ,m} we consider the linear map Sl on Rn

defined by

(2) Sl(ej) = ej−l + ej+l.

Apparently, Sl commutes with A and B, and it is a symmetric matrix
since

(3) Sl = Al + A−l = Al + (Al)T .

Thus Sl commutes with the projections πk onto the invariant planes Ek

defined above, and all these planes are eigenspaces of Sl. Identifying
Ek with C as in (1) above, Al|Ek

is the multiplication with ω = e2πilk/n

and hence Sl = Al + A−l is the multiplication with the real factor

(4) λ = ω + ω̄ = 2 cos(2πlk/n).

λ 2 10 λ

ω
1

ω1

ω
2

_
ω2

_

n = 5

ω

ω

λλλ 3 2

3

2

1

ω
2

0

ω1

ω1

_
_

_

ω3

n = 7

These integer linear maps Sl generate a commutative ring of integer
matrix invariants of the group Dn. They are invertible element (units)
in this ring: in fact, S1S2 . . . Sm = ±I on W since the product of all
eigenvalues λj = 2 cos(2πj/n) for j = 1, . . . ,m equals ±1.6 Hence any

some ω, then also λβ 6= 0 for β = ωk. Thus λω 6= 0 for all ω, and hence W c
1

cannot
miss any Ec

k if it contains a nonzero rational vector v.
6This can be seen for all odd n = 2m + 1 as follows. For any n-th unit root

ω 6= 1 we put wk = ωk + ω̄k. We have
∑n−1

j=0
ωj = 0 and hence

(∗) w1 + · · · + wm + 1 = 0.
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S = ±Sk1

1 Sk2

2 . . . Skm

m with nonnegative integers k1, . . . , km is integer
invertible on W . Using the identity

(5) SkSl = Sk−l + Sk+l

(with S0 := 2I) which follows straight forward from the definition, we
may easily compute S as an integer linear combination of S0, . . . , Sm.
If we manage to arrange the powers k1, . . . , km so that the eigenvalues
µj of S satisfy

(6) |µj| > 1 ∀j = 2, . . . ,m,

then S can serve as inflation map (cf. Section 4).
However, S is not integer invertible on all of Rn: in the diagonal

direction we have Sld = 2d for all l and hence Sd = sd with

(7) s = ±2k, k =
∑

kj.

Thus S−1 has an integer eigenvector e = nd =
∑

j ej, with a non-integer

eigenvalue 1

s
. We will address this problem in the next section.

7. The index of admissible points

For any integer point z ∈ Zn the number 〈z, e〉 =
∑

j zj = p ∈ Z

(where e =
∑

j ej) will be called the index of z. The whole grid Zn is
contained in the union of the hyperplanes

Hp = {x ∈ Rn; 〈x, e〉 = p} = W + pd = W + ep

for all p ∈ Z where W = H0 = e⊥ and ep ∈ Zn is any integer vector
with index p; e.g. we may choose ep = e1 + · · ·+ ep. The integer points

The terms wk can be expressed by powers of λ = ω+ω̄ as follows: We have λ1 = w1

and λ2 = w2 + 2 and λk = wk + (k
1
)wk−2 + (k

2
)wk−4 + . . . (+(k

l)) where the last
term is present only if k = 2l. Solving for wk we obtain

(∗∗) wk = λk − (k
1
)wk−2 − (k

2
)wk−4 − . . . (−(k

l))

(the last term is present only if k = 2l). When we apply the same formula to wk−2,
wk−4, etc., wk becomes a polynomial of degree k in λ. Inserting into (∗) we obtain a
polynomial equation pm(λ) = 0 of degree m, and the polynomial pm is independent
of the choice of ω. Hence the solutions are λ1, . . . , λm, and their product is the
λ0-coefficient a0 of pm(λ). E.g. we have p2(λ) = λ2 + λ − 1 (golden section) and
p3(λ) = λ3 +λ2 − 2λ− 1. Let vk denote the λ0-term of wk. Apparently, vk = 0 if k

is odd. For even k = 2j, we claim vk = (−1)j · 2. In fact, this is true for j = 1. By
induction hypothesis we have v2i = (−1)i·2 for i < j. The induction step is obtained

from (∗∗): v2j = −(2j
1

) v2j−2 − (2j
2

) v2j−4 − · · · − (2j
j ) = −(−1)j

∑
2j−1

i=1
(2j

i ) (−1)i =

(−1)j ·2. This proves the claim. Now from (∗) we see a0 = 1−v2−v4−· · · = (−1)k

for k = [m
2

].
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in Hp form the index p lattice

Γp = Hp ∩ Zn = (W + ep) ∩ Zn = Γ0 + ep

where Γ0 = W ∩Zn. When projected orthogonally onto W , any two of
these lattices Γp, Γq differ by a translation, and they are equal iff q ≡ p
mod n; then Γp and Γq differ by an integer multiple of e = en ⊥ W .
Since our projection plane Ea = E1 + a is contained in W , it suffices
to consider only the projections onto W , hence the index need to be
considered only modulo n. If z ∈ Zn is admissible for Ea, then z − x =
u ∈ In for some x ∈ Ea and hence 〈e, z〉 = 〈e, u〉 ∈ {1, . . . , n − 1}.
Thus admissible points have index p ∈ {1, . . . , n − 1}.

Our possible inflation map S = ±Sk1

1 . . . Skm

m changes the index from
p to sp since Sd = sd, cf. (7). However because S is invertible on Γ0,
it maps Γp = Γ0 + ep bijectively onto Γ0 + Sep = Γsp.

S is an inflation map (cf Section 4) iff

(8) πb(S(Σa ∩ Zn)) ⊃ πb(Σb ∩ Zn)

where b = Sa and Σa = Ea + In, and where πb denotes the orthogonal
projection onto Eb. Remembering the index we can rewrite this as

(9) πb(S(Σa ∩ Γp)) ⊃ πb(Σb ∩ Γq)

where q = sp; in particular we need sp 6≡ 0 mod n if p 6≡ 0 mod n.
Since we already know that S maps Γp bijectively onto Γq, this is
equivalent to

(10) πb(S(Σa ∩ Hp)) ⊃ πb(Σb ∩ Hq).

We have Σa = Ea + In = Ea + π⊥(In) where π⊥ is the projection onto
E⊥

1 ⊂ Rn, and hence

(11) Σa ∩ Hp = Ea + Wp, Wp := π⊥(In ∩ Hp)

The set Wp ⊂ E⊥
1 ∩Hp is sometimes called window. Hence S(Σa∩Hp) =

S(Ea) + S(Wp) = Eb + S(Wp), and (10) becomes

(12) πb(SWp) ⊃ πb(Wq)

for all p ∈ {1, . . . , n − 1}, where q ≡ sp mod n. This show that the
condition (6) may be not sufficient for S to be an inflation map but it
will suffice for a suitably large power Sk.

How does Wp look like? It is a projection of In ∩Hp which in turn is
the convex hull the set Vp formed by the vertices of In with precisely
p nonzero coordinates. The elements of Vp are parametrized by the
subsets J ⊂ {1, . . . , n} with |J | = p; in fact, if we put eJ =

∑
j∈J ej for

each such J , we have

Vp = {eJ ; J ⊂ {1, . . . , n}, |J | = p}
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and Wp is the convex hull of π⊥(vp). If J̄ denotes the complement of
J , then eJ̄ = e − eJ and hence (after projecting to W = e⊥) we have

(13) Wn−p = −Wp .

In particular we see from (13) that a sign change does not matter:
The condition (12) remains the same when passing from S to −S since
W−q = Wn−q = −Wq.

8. The Penrose case

For n = 5 the situation has often been described, cf. [dB], [KN], [K].
We have only S1, S2 with S1 + S2 = −I and S1S2 = −I. Choosing
S = −S1 with eigenvalues λ1 = − 1

Φ
and λ2 = Φ with Φ = 1

2
(1 +

√
5)

(golden section), we have q = −2p and hence p = 1, 2, 3, 4 corresponds
to q = 3, 1, 4, 2 modulo 5. The sets Wp ⊂ E2 are as follows. Let
αj = π2(ej). Clearly W1 is the convex hull of α1, . . . , α5, a pentagon.
W2 in turn is the convex hull of all αj + αk with j 6= k. The extremal
points (generating the convex hull) are sums of direct neighbors. These
are the points αi−1 + αi+1 = S1(ai) (recall that αi ∈ E2 corresponds
to the unit root ω2i under the identification (1)). Hence W2 is the
pentagon with vertices S1(αj) and W3 = −W2 the one with vertices
−S1(αj) = S(αj). Consequently S(W1) = W3, and the condition (12)
is satisfied for p = 1, q = 3. The same argument holds for p = 4,
q = 2, and the condition is trivially satisfied for the two remaining
pairs (p, q) since Wp ⊃ Wq. Hence S is an inflation map; in fact it
defines the subdivision described in the introduction. The inflation
tiling is obtained by applying S−1 = S2.

W

W

2

4

1

4

2

5

3

α

α

α

α

α
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9. The “Heprose” case

In the case n = 7, the map S1 has three eigenvalues λk = 2 cos(2πk/7)
for k = 1, 2, 3 with λ1 ≈ 1.247, λ2 ≈ −0.445, λ3 ≈ −1.802 (cf. figure
in Section 6), corresponding to the eigenspaces E1, E2, E3. According
to (4), S2 and S3 have the same eigenvalues in different order as dis-
played below. In particular the table shows that S2 is an expansion on
F = E2 + E3 and hence some power of S2 is an inflation map.

E1 E2 E3

S1 λ1 λ2 λ3

S2 λ2 λ3 λ1

S3 λ3 λ1 λ2

The index is changed by every Sj from p to q ≡ 2p mod 7, i.e.
p 7→ q is the order 3 permutation

(14) 1 7→ 2 7→ 4 7→ 1, 3 7→ 6 7→ 5 7→ 3.

The windows look more complicated than in the case n = 5: As
explained in Section 7, W1 is the convex hull of πF (ej) = π2(ej)+π3(ej)
for j = 1, . . . , 7. Using (1) we identify F with C2 and we get πF (ej) =
(ω2j, ω3j) where ω := e2πi/7. Hence W1 is the convex hull of the set

P1 = {(ω2j, ω3j); j = 1, . . . , 7} ⊂ C2

which lies on a Clifford torus S1×S1 ⊂ C×C as drawn in the subsequent
figure (identify parallel edges of the square).

W2 in turn is the convex hull of πF (ej+k + ej−k) = πF (Skej) =
(Skπ2ej, Skπ3ej) for k = 1, 2, 3. The corresponding point sets are con-
tained in three different Clifford tori:

P21 = {(λ2ω
2j, λ3ω

3j); j = 1, . . . , 7},
P22 = {(λ3ω

2j, λ1ω
3j); j = 1, . . . , 7},

P23 = {(λ1ω
2j, λ2ω

3j); j = 1, . . . , 7}.
Now we see that S2 is not an inflation map: It maps W1 perfectly onto
the convex hull of P22 but this is a proper subset of W2 as we shall see
below.
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W3 at last is the convex hull of the points πF (ej + ej+k + ej−l) with
j = 1, . . . , 7 and (k, l) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 1). In the first
three cases we have πF (ej + ej−k + ej+k) = πF ((I + Sk)ej) and we
obtain the three point sets

P31 = {((1 + λ2)ω
2j, (1 + λ3)ω

3j); j = 1, . . . , 7},
P32 = {((1 + λ3)ω

2j, (1 + λ1)ω
3j); j = 1, . . . , 7},

P33 = {((1 + λ1)ω
2j, (1 + λ2)ω

3j); j = 1, . . . , 7}.
In the two remaining cases we get for j = 7:

πF (e7 + e1 + e5) = (ω7 + ω2 + ω3, ω7 + ω3 + ω1) =: (η1, η2),
πF (e7 + e2 + e6) = (ω7 + ω4 + ω5, ω7 + ω6 + ω4) =: (η3, η4),

and hence the corresponding point sets are

P34 = {(ω2jη1, ω
3jη2); j = 1, . . . , 7},

P35 = {(ω2jη3, ω
3jη4); j = 1, . . . , 7}.

(It might be interesting to note that |ηi| =
√

2 for i = 1, 2, 3, 4.7) Since
W7−p = −Wp, we have finished the description of the windows.

Now we have seen that all Wp are convex hulls of a union of point
sets P = Pij which have a common form:

(15) P = {(ω2jα, ω3jβ); j = 1, . . . , 7}
for some α, β ∈ C∗. How can we understand the convex hull CH(P )
of the set P? This is a subset of C × C = R4 which may be hard to
imagine, but we can draw its intersection with the plane Eo := Rα×Rβ
which is at the same time its projection onto this plane (cf. subsequent
figure). In the figure we have drawn the planes E2, E3 and Eo. E.g. the
point 25 ∈ Eo is the intersection of Eo with line segment between the
points 2 := (ω2·2α, ω3·2β) and 5 := (ω2·5α, ω3·5β). Hence CH(P )∩Eo is
the convex hull or the four points 00 = (α, β), 25, 16 and 34 as shown in
the figure below. The coordinates of these vertices with respect to the
basis α, β are easily read off from the figure: 00 = (1, 1), 25 = 1

2
(λ3, λ1),

16 = 1

2
(λ2, λ3), 34 = 1

2
(λ1, λ2).

Now we can test which of the maps S = ±Sk1

1 Sk2

2 Sk3

3 are inflation
maps. A necessary condition is that S(W1) ⊃ S(Ws) where s = ±2k

with k = k1 + k2 + k3 is the diagonal eigenvalue of S. If k = 1 then S2

is the only candidate which is an expansion on F . But it fails to satisfy
S2(W1) ⊃ W2 since S2(W1) 6⊃ CH(P21): the point (λ2, λ3) ∈ CH(P21)
is not contained in CH(S2P1) ⊂ S2(W1) which is the convex hull of the
points S2(00) = (λ3, λ1), S2(25) = 1

2
(λ2

3, λ
2
1), S2(16) = 1

2
(λ2λ3, λ3λ1),

7 (1 + ω + ω3)(1 + ω̄ + ω̄3) =
∑

3

k=1
(ωk + ω̄k) + 3.
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β

α

1

2

3

4

5

6

1

2

3

5

6

4

25

16

34

00

2

ο

Ε

Ε

Ε

3

S2(34) = 1

2
(λ1λ3, λ2λ1) all of whose second coordinates are bigger than

λ3.
For similar reasons, S2

2 = 2I + S3 (cf. (5)) as well fails to be an
inflation map: Now we have k = 2 and s = 4, but S2

2(W1) 6⊃ W4 since
the point −(1 + λ3, 1 + λ1) ∈ −P32 ⊂ −W3 = W4 is not contained
in CH((2 + S3)W1) ∩ Eo: The second coordinates of the generating
points are 1

2
(2 + λ1) multiplied by 2, λ1, λ3, λ2, and all these numbers

are larger than −(1 + λ1). There are no further candidates with k = 2
since SiSj = S−1

l when {i, j, l} = {1, 2, 3}, and S−1

l has two contracting
eigenvalues.

The next case is k = 3 and s = 8 ≡ 1 mod 7, thus S preserves the
index. In order to show the inflation property it suffices to show that
S(CH(P )) ⊂ CH(P ) for each of the sets P = Pij.

Lemma 9.1. S with s ≡ 1 mod 7 is an inflation map if and only if

(16) S(W1 ∩ Eo) ⊃ W1 ∩ Eo.

Proof. Clearly the condition (16) is necessary. But it is also sufficient:
First of all, if the condition holds for W1 ∩ Eo = CH(P1) ∩ Eo, it also
holds for CH(P ) ∩ Eo for each of the sets P = Pij since S acts in
the same way in all cases. Further, due to the C7-invariance of S, the
condition still holds when we replace the plane Eo = Rα + Rβ by one
of the corresponding planes Rω2jα + Rω3jβ. But then in particular
(ω2jα, ω3jβ) ∈ S(CH(P )), and since CH(P ) is the convex hull of these
points, we obtain S(CH(P )) ⊃ CH(P ) and hence S(Wj) ⊃ Wj. �

Theorem 9.2. S = S3
2 is an inflation map for any Heprose tiling.
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Proof. We just have to show that the plane quadrangle with vertices
(λ3, λ1), (λ2λ3), (λ1, λ2), (2, 2) is contained in its image under the di-
agonal matrix diag(λ3

3, λ
3
1), see figure!! �

The inflation subtiling of a given tiling is obtained by applying S−1 =
S−3

2 (cf. Section 4. We have S−1

2 = S1S3 = −(S1 + 1), hence

S−3

2 = −(S1 + 1)3 = −(S3

1 + 3S2

1 + 3S1 + 1).

Using S2
1 = 2 + S2 and S3

1 = (2 + S2)S1 = 2S1 − S2 − 1 we obtain

S−3

2 = −(2S1 − S2 − 1 + 6 + 3S2 + 3S1 + 1)
= −(2S1 − S2 + 6 − 3S3 − 3)
= −2S1 + S2 + 3S3 − 3

where we have used the identity S1+S2+S3+1 = 0. Thus the inflation
factor is 2|λ1|+ |lambda2|+3|λ3|+3 which we can see in the examples
displayed below.

There are still other candidates S of order k = 3: consider the map

S := S1S
2

2 = S1(2 + S3) = 2S1 − S1 − 1 = S1 − 1.

Its eigenvalues 1− λ1 ≈ 0.247, 1− λ2 ≈ 1.445, q − λ3 ≈ 2.802 have the
right behavior. However, as it turns out, the condition (16) is violated
(cf Figure!!). On the other hand, only a small portion of W1 ∩ Eo is
outside S(W1∩Eo). Hence very few vertex points of the inflation tiling
do not belong to the original tiling. In the example displayed below
there are no errors visible. Passing to S2 = S2

1S2S
3
2 , we get a true

inflation map; this is independent of the previous one, S3, since S2
1S2

is not an inflation map. Note that

S ′ := S1S2

3 = S1(2 + S1) = 2S1 + S2 + 2

is the inverse of S since SS ′ = (S1S2S3)
2 = I. This shows the inflation

factor of S, and we also see that there are no further examples with
k = 3.

10. Displaying the new patterns

Let Ea be a r-dimensional affine subspace of Rn, r < n, whose points
have at most r integer coordinates (“general position”). An integer grid
point z ∈ Zn is admissible iff there is some x ∈ Ea such that z ∈ x+In,
or in other words, (z − In) ∩ Ea 6= ∅.

Stated slightly differently, z ∈ Zn is admissible if the subspace Ea

intersect the closed n-cube z − Īn in a point x′ with r integer values,
say x′

i1
= zi1 − c1, . . . , x

′
ir = zir − cr where 1 ≤ i1 < · · · < ir ≤ n,

such that c1, . . . , cr ∈ {0, 1}. Conversely, for any point x′ ∈ Ea with r
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integer coordinates the integer vector z = ⌈x′⌉ is admisible (where ⌈x′⌉
denotes the integer vector z with coordinates zj ∈ [x′

j, x
′
j + 1)).

Any admissible point z is the lowest vertex of an admissible r-cube
z + f where f ⊂ Īn is an r-face of the unit cube Īn, and the admissibla
r-faces z + f project onto tiles in Ea. The neighbors of z in z + f are
precisely the (n

r ) integer points z′ with z′j − zj = 0 for j 6∈ {i1, . . . , ir}
and z′j − zj ∈ {0, 1} for j ∈ {i1, . . . , ir}.

Checking admisibility of a tile reduces therefore to check for admis-
ibility of its vertex z with lowest coordinate values. This is simply
done by finding the corresponding x′ from z by solving the following
equations and then checking if z′ = ⌈x′⌉:

x′

ik
= z′ik for k = 1, . . . , r

〈x′, vj〉 = 〈a, vj〉 for j = 1, . . . , n − r,

where a ∈ Ea, and (vj)j=1,...,n−r is a basis of the linear subspace E⊥
a

perpendicular to Ea.
In the “n-rose” case Ea = E1 + a we choose for (vj) the set of

those eigenvectors vω of the cyclic permutation matrix A which are
perpendicular to E1, i.e. the ω 6= ω1, ω̄1 where ω1 = e2πi/n (cf. Section
5). Since x′ in the above equations is real, it does not matter if vω is a
complex vector.

We have displayed the three symmetric Heprose tilings for Ejd with
j = 1, 2, 3 togegther with their inflation tilings by −S−3

1 and the quasi-
inflation tilings by (S1S

2
2)

−1. (see figures!!)

11. “Elevenrose” tilings

We briefly discuss the next prime number n = 11. Here we have five
planes Ek, k = 1, . . . , 5 and five generating invariant matrices S1, . . . , S5

with eigenvalues λk = 2 cos(2πk/11). According to (4), the eigenvalues
of Sl on Ek are as in the table below. The last line shows that S = S2S

3
3

E1 E2 E3 E4 E5

S1 λ1 λ2 λ3 λ4 λ5

S2 λ2 λ4 λ5 λ3 λ1

S3 λ3 λ5 λ2 λ1 λ4

S4 λ4 λ3 λ1 λ5 λ2

S5 λ5 λ1 λ4 λ2 λ3

S2S
3
3 −0.019 9.255 1.101 1.356 −3.780

satisfies the condition (6) and hence some power of S is an inflation
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map. We conjecture that there are inflation maps for any “n-rose”
tiling if n ≥ 5 is prime.

12. Discussion

There are three types of “Heprose” tilings with full D7-symmetry,
and each of them is self similar in the sense that its vertex set is mapped
to a proper subset by a homothety, even in several different ways. Fur-
ther, there is an uncountable number of tilings without D7-symmetry,
and again a subset of its vertex set is a homothetic image of the vertex
set of (another) such tiling. Further, each of these tilings is arbitrarily
close to the symmetric ones after some (maybe very large) translation.
All these properties are shared with the Penrose tilings.

However, the tiles are cut into rather complicated pieces by the edges
of the coarser tiling, and each large tile allows a huge (but finite) num-
ber of different subtilings. Therefore, unlike in the Penrose case, it
would not be possible to obtain such tilings from repeatedly subdi-
viding a tile and enlarging the pieces: since the decomposition is not
unique, we do not know the right subdivision to take.

There are other tilings related to the heptagon where the tiles do
have a fixed decomposition (cf. [D]), however they do not arise by
projection and they do not allow a precise D7 symmetry. In this way,
the original Penrose tiling is extremely special since it satisfies all these
properties jointly.
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