SELF SIMILAR SYMMETRIC PLANAR TILINGS

J.-H. ESCHENBURG AND H.J. RIVERTZ

Contents

1. Introduction 1
2. Aperiodic tilings via projections 4
3. Symmetry of the tiling 5
4. Inflation 6
5. Planar tilings with dihedral symmetry 7
6. Dihedral integer matrix invariants 9
7. The index of admissible points 10
8. The Penrose case 12
9. The "Heprose" case 13
10. Displaying the new patterns 16
11. "Elevenrose" tilings 17
12. Discussion 18

References 18

1. Introduction

It is an elementary geometric fact that periodic tilings in dimension 2 and 3 (e.g. crystals) do not allow symmetries of any order different from $2,3,4$, or 6 . Yet there are diffraction patterns of solids showing 5 fold and even 10 -fold symmetry. ${ }^{1}$ They belong to solids with aperiodic quasi-crystalline structure, discovered in the early 80 's [Sh].

Some years before, Richard Penrose [P] discovered possible models for such quasi-crystals, at least in dimension 2: a class of aperiodic tilings of the euclidean plane with astonishing properties. As in the case of periodic tilings they have subtilings of any scale with tiles homothetic to the original one. There are two types of tiles, two rhombs (a thick and a thin one) which occur in the regular pentagon; its halves are the two isosceles triangles displayed above. As shown in the figure, these triangles come with a subdivision into smaller trangles of the same shape; the scaling factor is the golden ratio $\varphi=\frac{1}{2}(\sqrt{5}-1)$. The same subdivisions can also be applied to the small triangles, and when matching across the border lines is required, there is only one way to do it:

(To see uniqueness note that the displayed subdivision of the central triangle is the only one compatible with a subdivision of the one on

[^0]the right hand side.) By repetition we obtain a subdivision into arbitrary small triangles or rhombs. The Penrose tilings have the inverse property: the triangles (half tiles) can be pieced together to form larger and larger triangles or rhombs where the small ones subdivide the large ones as in the above figure, and all large rhombs together form another Penrose tiling.

In the preceding example ${ }^{2}$ we can easily find one of these subtilings: its vertices are the centers of the stars formed by five thick rhombs. Some of the stars have a fully symmetric neighborhood, either pentagonal or star shaped and are surrounded by a chain of thick rhombs; the centers of these stars form the vertices of another tiling with even

[^1]larger tiles. The displayed example is one of the two Penrose tilings with full pentagonal symmetry (centered at the bottom rose); the other one is given by the subtilings.

It is well known (cf. [dB]) that Penrose tilings arise from the integer grid in \mathbb{R}^{5} by projection onto a certain affine plane $E_{a} \subset \mathbb{R}^{5}$. More precisely, there are two-dimensional linear subspaces $E_{1}, E_{2} \subset \mathbb{R}^{5}$ which are invariant under cyclic coordinate permutations, and we put $E_{a}=$ $E_{1}+a$ for some nonzero $a \in E_{2}$. The tiles arise from the squares with integer vertex coordinates which lie entirely in the strip $E+I^{5}$ in 5space where $I=(0,1)$ is the open unit interval and I^{5} the unit cube in \mathbb{R}^{5}; these squares are projected orthogonally onto E_{a}. In the present paper we want to investigate a similar construction replacing 5 by other numbers, in particular 7 . Since this means replacing the pentagon by the heptagon, we propose to call these patterns Heprose tilings (with apologies to Professor Penrose). As it will turn out, subtilings of the same sort still exist in all scales. However, they cut the original tiles into pieces which are far more complicated than the triangles in Penrose's case, and moreover the large tiles are subdivided by the small ones in many different ways.

We like to thank L. Danzer for valuable hints and discussion.

2. Aperiodic tilings via projection

In euclidean n-space \mathbb{R}^{n} we consider an r-dimensional subspace E and a parallel affine subspace $E_{a}=E+a, a \in \mathbb{R}^{n}$ with the following properties:

- E is irrational, i.e. $E \cap \mathbb{Z}^{n}=\{0\}$,
- E_{a} is in general position, i.e. there are no points on E_{a} with more than r integer coordinates.
We define a tiling $T E_{a}$ on E_{a} (and hence on E) as follows. An integer point $z \in \mathbb{Z}^{n}$ is admissible if z is contained in the strip $\Sigma_{a}=E_{a}+I^{n}$ where $I^{n}=(0,1)^{n}$ is the open unit cube. An r-dimensional face of a lattice cube $z+I^{n}, z \in \mathbb{Z}^{n}$, is admissible if it is contained in Σ_{a}, i.e. all its 2^{m} vertices are admissible. The orthogonal projections of the admissible r-faces onto E_{a} are the tiles; it is a nontrivial fact that these always define a tiling $[\mathrm{S}]$. Since there are only finitely many r faces up to translation, we get finitely many types of tiles, not more than $\binom{n}{m}$, and each tile is an r-dimensional parallelogram. These tilings $T E_{a}$ corresponding to affine subspaces $E_{a}=E+a$ parallel to E will be called E-tilings.

Replacing a by $a+z$ for some $z \in \mathbb{Z}^{n}$ we obtain an equivalent tiling, i.e. the tilings $T E_{a}$ and $T E_{a+z}$ just differ by a translation. Since no
integer translation leaves E_{a} invariant, the tiling $T E_{a}$ has no periods. However in any ϵ-neighborhood of E_{a} there are infinitely many integer points. Let z_{1}, z_{2} be two such points and put $z=z_{1}-z_{2}$, then E_{a} is 2ϵ-close to E_{a+z} and hence the strips Σ_{a} and Σ_{a+z} will be almost the same. In other words, for most integer points, the admissability conditions for E_{a} and E_{a+z} will agree and hence the two tilings are almost the same. Thus $T E_{a}$ has no periods, but is has almost periods.

Now let $F \subset \mathbb{R}^{n}$ be another irrational subspace perpendicular to E. Then the projection of the grid, $\pi_{F}\left(\mathbb{Z}^{n}\right)$ is dense in $F .{ }^{3}$ Thus any two E-tilings $T E_{a}, T E_{b}$ with $b-a \in F$ are almost equivalent. In fact, there is some $z \in \mathbb{Z}^{n}$ such that $\pi_{F}(z)$ is arbitrarily close to $b-a$ and hence E_{a+z} is arbitrarily close to E_{b}. As before we conclude that the two tilings on E_{b} and E_{a+z} are almost the same.

3. Symmetry of the tiling

Let G be a subgroup of the permutation group S_{n} of $\{1, \ldots, n\}$ which acts on \mathbb{R}^{n} by permuting the coordinates: $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\sigma 1}, \ldots, x_{\sigma n}\right)$

[^2]for $\sigma \in G$. The corresponding permutation matrices are orthogonal and integer. Thus each $g \in G$ preserves the integer lattice and the unit cube I^{n}. Let $W \subset \mathbb{R}^{n}$ be a nonzero subspace which is G-invariant and rational (i.e. spanned by integer vectors) and which is minimal with respect to these two properties. Such space will be called rationally irreducible. Then any nonzero G-invariant subspace $E \subset W$ will be irrational unless $E=W$. In fact, if there is a nonzero integer vector $z \in E$, the orbit $G z$ consists of integer vectors and spans a rational G invariant subspace $E^{\prime} \subset E \subset W$. By rational irreducibility, $E^{\prime}=W$, hence $E=W$.

While W is rationally irreducible, it may be reducible as a representation of G over \mathbb{R}. We let $E \subset W$ be an irreducible G-invariant subspace and F its orthogonal complement in W. Then both E and F are G-invariant and irrational, and any two tilings of E_{a} and E_{b} with $a-b \in F$ are almost equivalent in the sense of Section 2.

The diagonal vector

$$
d=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)=\frac{1}{n} e
$$

where $e=(1, \ldots, 1)=\sum_{j=1}^{n} e_{j}$, is fixed by any permutation, hence by G. The affine subspace $E_{k d}=E+k d$ is in general position for any $k \in\{1, \ldots, n-1\}$ and preseved by G. The corresponding tiling $T E_{k d}$ is symmetric under G and all tilings $T E_{k d+a}$ with $a \in F$ are almost equivalent to $T E_{k d}$, in particular almost G-symmetric.

Important examples are dihedral groups $(r=2)$ and the ikosahedral group $(r=3)$. The dihedral group D_{n} acts by permutations on the n vertices of a regular n-gon, hence $D_{n} \subset S_{n}$. The ikosahedral group A_{5} permutes the 12 vertices, 20 faces and 30 edges of the ikosahedron, hence $A_{5} \subset S_{12}, S_{20}, S_{30}$. In the present paper we consider the dihedral group D_{n} for prime numbers n; other examples will be treated in [ER].

4. INFLATION

Now suppose further that E is an eigenspace of a symmetric matrix S which is integer invertible, i.e. it maps the integral lattice \mathbb{Z}^{n} bijectively onto itself. ${ }^{4}$ Then $S\left(E_{a}\right)=E_{b}$ for $b=S a$. The set of vertices of $T E_{a}$ is the E_{a}-projection of the set $Z_{a}=\Sigma_{a} \cap \mathbb{Z}^{n}$. This is mapped by S bijectively onto $S Z_{a}=S\left(\Sigma_{a}\right) \cap \mathbb{Z}^{n}$. Since $\left.S\right|_{E}$ is multiplication by a scalar, the projection of $S Z_{a}$ on E_{b} is congruent up to scaling to the projection of Z_{a} onto E_{a}, hence the tiling of E_{a} and its image under S are congruent up to scaling.

[^3]Further we assume that S is an proper expansion on E^{\perp} (and a contraction on E). Then $S\left(\Sigma_{a}\right) \supset \Sigma_{b}$ and hence $S Z_{a} \supset Z_{b}=\Sigma_{b} \cap \mathbb{Z}^{n}$. Thus $T E_{b}$ with vertex set $\pi_{E_{b}}\left(Z_{b}\right)$ is refined by a diminution of $T E_{a}$ with vertex set $\pi_{E_{b}}\left(S Z_{a}\right)$. Conversely, $S^{-1}\left(T E_{b}\right)$ is a proper subtiling of $T E_{a}$ in the sense that the vertices of $S^{-1}\left(T E_{b}\right)$ form a subset of the vertex set of $T E_{a}$. This phenomenon is called inflation, such a linear map S will be called an inflation map and $S^{-1}\left(T E_{b}\right)$ an inflation tiling of $T E_{a}$. In the subsequent figure the situation is drawn for $n=2$ and $S=\left(\begin{array}{rr}0 & -1 \\ -1 & 1\end{array}\right)$. The eigenvalues of S are $-\varphi$ and Φ where $\varphi=\frac{1}{2}(\sqrt{5}-1)$ is the golden section and $\Phi=\frac{1}{\phi}=\varphi+1$ its inverse, and E is the $(-\varphi)$-eigenspace of S.

Now let $E \subset \mathbb{R}^{n}$ be an irreducible representation space of a group $G \subset S_{n}$ as described in Section 3, and assume that there is no other G submodule in \mathbb{R}^{n} which is equivalent to E. Then we want the inflation map S to be G-invariant, i.e. $g S=S g$ for any $g \in G$. Hence $S E=E$ and in fact E is contained in an eigenspace of S since $\operatorname{ker}(S-\lambda I) \cap E$ is G-invariant. If a tiling $T E_{a}$ is G-invariant, the same holds for $S\left(T E_{a}\right)$.

5. Planar tilings with dihedral symmetry

We consider the cyclic permutation $\alpha \in S_{n}$ with $\alpha j=j+1$ for all $j=1, \ldots, n \bmod n$. The corresponding linear map A on \mathbb{R}^{n} permuting the coordinates sends $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{2}, \ldots, x_{n}, x_{1}\right)$. The matrix A is diagonalizable over \mathbb{C} with eigenvectors $v_{\omega}=\left(\omega^{0}, \ldots, \omega^{n-1}\right) \in \mathbb{C}^{n}$
where ω is any n-th root of unity, $\omega^{n}=1$. Apparently $A v_{\omega}=\omega v_{\omega}$, hence ω is the corresponding eigenvalue. The only real eigenvalues are 1 with eigenvector $e=(1, \ldots, 1)$ and in case of even n also -1 corresponding to the eigenvector $f=(1,-1, \ldots, 1,-1)$. All other eigenvalues and eigenvectors come in conjugate pairs, and thus the real and imaginary parts of v_{ω} span an A-invariant 2-plane $E_{k} \subset \mathbb{R}^{n}$ on which A acts by rotation with rotation angle $2 \pi k / n$. We identify E_{k} with the complex plane \mathbb{C} by assigning

$$
\begin{equation*}
\operatorname{Re} v_{\omega} \mapsto 1, \quad \operatorname{Im} v_{\omega} \mapsto i=\sqrt{-1} \tag{1}
\end{equation*}
$$

With this identification, $\left.A\right|_{E_{k}}$ becomes the multiplication by $\omega=\omega_{k}=$ $e^{2 \pi i k / n}$, hence $\pi_{k} e_{j}$ is identified with $\omega^{j}=\omega_{k j}$, where π_{k} is the orthogonal projection onto E_{k}.

We have the orthogonal decomposition $\mathbb{R}^{n}=D+E_{1}+\cdots+E_{m}$ where $m=\left[\frac{n-1}{2}\right]$ and D is spanned by e and (if present) f.

The permutation α generates the cyclic group C_{n} of order n. The dihedral group D_{n} is the extension of C_{n} by the permutation $\beta: j \mapsto$ $n-j$. Let B be the corresponding linear map on \mathbb{R}^{n}. Then apparently $B v_{\omega}=\overline{v_{\omega}}$, and thus the A-invariant planes E_{k} are also B-invariant for $k=1, \ldots, m$. Hence the E_{k} are irreducible and inequivalent $D_{n^{-}}$ modules (even after complexification).

The generalized Penrose tilings (" n-rose tilings") arise as follows. Let $E=E_{1}$ and $F=E_{2}+\cdots+E_{m}$. For any $a \in F$ we put $E_{a}=E+a$ where $E:=E_{1}$. As described above, the tiles are the orthogonal $E_{a^{-}}$ projections of all unit squares with integer vertices in the strip $\Sigma_{a}=$ $E_{a}+I^{n}$ where $I=(0,1)$.

We restrict our attention to the case where n is a prime (cf. [ER] for the the composite case). The group D_{n} has the fixed vector e but this is not in $W:=e^{\perp}=E+F$. However, if we put $d=\frac{k}{n} e$ for some $k \in\{1, \ldots, n-1\}$, then $a=d-\left(e_{1}+\cdots+e_{k}\right) \in W$, and the tilings $T E_{d}$ and $T E_{a}$ are equivalent. Thus we find $n-1$ tilings with D_{n}-symmetry. Since n is prime, the space W is rationally irreducible for D_{n} and by the results of Section 2, any two such tilings are almost equivalent. ${ }^{5}$

[^4]
6. DIHEDRAL INTEGER MATRIX INVARIANTS

As before, let $n=2 m+1$ be a prime and consider the dihedral group $D_{n} \subset S_{n}$ generated by the permutations $\alpha, \beta \in S_{n}$ with $\alpha j=j+1$ and $\beta j=n-j$ for all $j=1, \ldots, n \bmod n$. It acts on \mathbb{R}^{n} by permuting the coordinates; the corresponding integer orthogonal matrices are denoted A, B. For any $l \in\{1, \ldots, m\}$ we consider the linear map S_{l} on \mathbb{R}^{n} defined by

$$
\begin{equation*}
S_{l}\left(e_{j}\right)=e_{j-l}+e_{j+l} \tag{2}
\end{equation*}
$$

Apparently, S_{l} commutes with A and B, and it is a symmetric matrix since

$$
\begin{equation*}
S_{l}=A^{l}+A^{-l}=A^{l}+\left(A^{l}\right)^{T} . \tag{3}
\end{equation*}
$$

Thus S_{l} commutes with the projections π_{k} onto the invariant planes E_{k} defined above, and all these planes are eigenspaces of S_{l}. Identifying E_{k} with \mathbb{C} as in (1) above, $\left.A^{l}\right|_{E_{k}}$ is the multiplication with $\omega=e^{2 \pi i l k / n}$ and hence $S_{l}=A^{l}+A^{-l}$ is the multiplication with the real factor

$$
\begin{equation*}
\lambda=\omega+\bar{\omega}=2 \cos (2 \pi l k / n) . \tag{4}
\end{equation*}
$$

These integer linear maps S_{l} generate a commutative ring of integer matrix invariants of the group D_{n}. They are invertible element (units) in this ring: in fact, $S_{1} S_{2} \ldots S_{m}= \pm I$ on W since the product of all eigenvalues $\lambda_{j}=2 \cos (2 \pi j / n)$ for $j=1, \ldots, m$ equals $\pm 1 .{ }^{6}$ Hence any
some ω, then also $\lambda_{\beta} \neq 0$ for $\beta=\omega^{k}$. Thus $\lambda_{\omega} \neq 0$ for all ω, and hence W_{1}^{c} cannot miss any E_{k}^{c} if it contains a nonzero rational vector v.
${ }^{6}$ This can be seen for all odd $n=2 m+1$ as follows. For any n-th unit root $\omega \neq 1$ we put $w_{k}=\omega^{k}+\bar{\omega}^{k}$. We have $\sum_{j=0}^{n-1} \omega^{j}=0$ and hence

$$
\begin{equation*}
w_{1}+\cdots+w_{m}+1=0 . \tag{*}
\end{equation*}
$$

$S= \pm S_{1}^{k_{1}} S_{2}^{k_{2}} \ldots S_{m}^{k_{m}}$ with nonnegative integers k_{1}, \ldots, k_{m} is integer invertible on W. Using the identity

$$
\begin{equation*}
S_{k} S_{l}=S_{k-l}+S_{k+l} \tag{5}
\end{equation*}
$$

(with $S_{0}:=2 I$) which follows straight forward from the definition, we may easily compute S as an integer linear combination of S_{0}, \ldots, S_{m}. If we manage to arrange the powers k_{1}, \ldots, k_{m} so that the eigenvalues μ_{j} of S satisfy

$$
\begin{equation*}
\left|\mu_{j}\right|>1 \quad \forall j=2, \ldots, m \tag{6}
\end{equation*}
$$

then S can serve as inflation map (cf. Section 4).
However, S is not integer invertible on all of \mathbb{R}^{n} : in the diagonal direction we have $S_{l} d=2 d$ for all l and hence $S d=s d$ with

$$
\begin{equation*}
s= \pm 2^{k}, \quad k=\sum k_{j} \tag{7}
\end{equation*}
$$

Thus S^{-1} has an integer eigenvector $e=n d=\sum_{j} e_{j}$, with a non-integer eigenvalue $\frac{1}{s}$. We will address this problem in the next section.

7. The index of admissible points

For any integer point $z \in \mathbb{Z}^{n}$ the number $\langle z, e\rangle=\sum_{j} z_{j}=p \in \mathbb{Z}$ (where $e=\sum_{j} e_{j}$) will be called the index of z. The whole grid \mathbb{Z}^{n} is contained in the union of the hyperplanes

$$
H_{p}=\left\{x \in \mathbb{R}^{n} ;\langle x, e\rangle=p\right\}=W+p d=W+e^{p}
$$

for all $p \in \mathbb{Z}$ where $W=H_{0}=e^{\perp}$ and $e^{p} \in \mathbb{Z}^{n}$ is any integer vector with index p; e.g. we may choose $e^{p}=e_{1}+\cdots+e^{p}$. The integer points

The terms w_{k} can be expressed by powers of $\lambda=\omega+\bar{\omega}$ as follows: We have $\lambda^{1}=w_{1}$ and $\lambda^{2}=w_{2}+2$ and $\lambda^{k}=w_{k}+\binom{k}{1} w_{k-2}+\binom{k}{2} w_{k-4}+\ldots\left(+\binom{k}{l}\right)$ where the last term is present only if $k=2 l$. Solving for w_{k} we obtain

$$
\begin{equation*}
w_{k}=\lambda^{k}-\binom{k}{1} w_{k-2}-\binom{k}{2} w_{k-4}-\ldots\left(-\binom{k}{l}\right) \tag{**}
\end{equation*}
$$

(the last term is present only if $k=2 l$). When we apply the same formula to w_{k-2}, w_{k-4}, etc., w_{k} becomes a polynomial of degree k in λ. Inserting into $(*)$ we obtain a polynomial equation $p_{m}(\lambda)=0$ of degree m, and the polynomial p_{m} is independent of the choice of ω. Hence the solutions are $\lambda_{1}, \ldots, \lambda_{m}$, and their product is the λ^{0}-coefficient a_{0} of $p_{m}(\lambda)$. E.g. we have $p_{2}(\lambda)=\lambda^{2}+\lambda-1$ (golden section) and $p_{3}(\lambda)=\lambda^{3}+\lambda^{2}-2 \lambda-1$. Let v_{k} denote the λ^{0}-term of w_{k}. Apparently, $v_{k}=0$ if k is odd. For even $k=2 j$, we claim $v_{k}=(-1)^{j} \cdot 2$. In fact, this is true for $j=1$. By induction hypothesis we have $v_{2 i}=(-1)^{i} \cdot 2$ for $i<j$. The induction step is obtained from $(* *): v_{2 j}=-\binom{2 j}{1} v_{2 j-2}-\binom{2 j}{2} v_{2 j-4}-\cdots-\binom{2 j}{j}=-(-1)^{j} \sum_{i=1}^{2 j-1}\binom{2 j}{i}(-1)^{i}=$ $(-1)^{j} \cdot 2$. This proves the claim. Now from (*) we see $a_{0}=1-v_{2}-v_{4}-\cdots=(-1)^{k}$ for $k=\left[\frac{m}{2}\right]$.
in H_{p} form the index p lattice

$$
\Gamma_{p}=H_{p} \cap \mathbb{Z}^{n}=\left(W+e^{p}\right) \cap \mathbb{Z}^{n}=\Gamma_{0}+e^{p}
$$

where $\Gamma_{0}=W \cap \mathbb{Z}^{n}$. When projected orthogonally onto W, any two of these lattices Γ_{p}, Γ_{q} differ by a translation, and they are equal iff $q \equiv p$ $\bmod n$; then Γ_{p} and Γ_{q} differ by an integer multiple of $e=e^{n} \perp W$. Since our projection plane $E_{a}=E_{1}+a$ is contained in W, it suffices to consider only the projections onto W, hence the index need to be considered only modulo n. If $z \in \mathbb{Z}^{n}$ is admissible for E_{a}, then $z-x=$ $u \in I^{n}$ for some $x \in E_{a}$ and hence $\langle e, z\rangle=\langle e, u\rangle \in\{1, \ldots, n-1\}$. Thus admissible points have index $p \in\{1, \ldots, n-1\}$.

Our possible inflation map $S= \pm S_{1}^{k_{1}} \ldots S_{m}^{k_{m}}$ changes the index from p to $s p$ since $S d=s d$, cf. (7). However because S is invertible on Γ_{0}, it maps $\Gamma_{p}=\Gamma_{0}+e^{p}$ bijectively onto $\Gamma_{0}+S e^{p}=\Gamma_{s p}$.
S is an inflation map (cf Section 4) iff

$$
\begin{equation*}
\pi_{b}\left(S\left(\Sigma_{a} \cap \mathbb{Z}^{n}\right)\right) \supset \pi_{b}\left(\Sigma_{b} \cap \mathbb{Z}^{n}\right) \tag{8}
\end{equation*}
$$

where $b=S a$ and $\Sigma_{a}=E_{a}+I^{n}$, and where π_{b} denotes the orthogonal projection onto E_{b}. Remembering the index we can rewrite this as

$$
\begin{equation*}
\pi_{b}\left(S\left(\Sigma_{a} \cap \Gamma_{p}\right)\right) \supset \pi_{b}\left(\Sigma_{b} \cap \Gamma_{q}\right) \tag{9}
\end{equation*}
$$

where $q=s p$; in particular we need $s p \not \equiv 0 \bmod n$ if $p \not \equiv 0 \bmod n$. Since we already know that S maps Γ_{p} bijectively onto Γ_{q}, this is equivalent to

$$
\begin{equation*}
\pi_{b}\left(S\left(\Sigma_{a} \cap H_{p}\right)\right) \supset \pi_{b}\left(\Sigma_{b} \cap H_{q}\right) \tag{10}
\end{equation*}
$$

We have $\Sigma_{a}=E_{a}+I^{n}=E_{a}+\pi_{\perp}\left(I^{n}\right)$ where π_{\perp} is the projection onto $E_{1}^{\perp} \subset \mathbb{R}^{n}$, and hence

$$
\begin{equation*}
\Sigma_{a} \cap H_{p}=E_{a}+W_{p}, \quad W_{p}:=\pi_{\perp}\left(I^{n} \cap H_{p}\right) \tag{11}
\end{equation*}
$$

The set $W_{p} \subset E_{1}^{\perp} \cap H_{p}$ is sometimes called window. Hence $S\left(\Sigma_{a} \cap H_{p}\right)=$ $S\left(E_{a}\right)+S\left(W_{p}\right)=E_{b}+S\left(W_{p}\right)$, and (10) becomes

$$
\begin{equation*}
\pi_{b}\left(S W_{p}\right) \supset \pi_{b}\left(W_{q}\right) \tag{12}
\end{equation*}
$$

for all $p \in\{1, \ldots, n-1\}$, where $q \equiv s p \bmod n$. This show that the condition (6) may be not sufficient for S to be an inflation map but it will suffice for a suitably large power S^{k}.

How does W_{p} look like? It is a projection of $I_{n} \cap H_{p}$ which in turn is the convex hull the set V_{p} formed by the vertices of I^{n} with precisely p nonzero coordinates. The elements of V_{p} are parametrized by the subsets $J \subset\{1, \ldots, n\}$ with $|J|=p$; in fact, if we put $e_{J}=\sum_{j \in J} e_{j}$ for each such J, we have

$$
V_{p}=\left\{e_{J} ; J \subset\{1, \ldots, n\},|J|=p\right\}
$$

and W_{p} is the convex hull of $\pi_{\perp}\left(v_{p}\right)$. If \bar{J} denotes the complement of J, then $e_{\bar{J}}=e-e_{J}$ and hence (after projecting to $W=e^{\perp}$) we have

$$
\begin{equation*}
W_{n-p}=-W_{p} \tag{13}
\end{equation*}
$$

In particular we see from (13) that a sign change does not matter: The condition (12) remains the same when passing from S to $-S$ since $W_{-q}=W_{n-q}=-W_{q}$.

8. The Penrose case

For $n=5$ the situation has often been described, cf. [dB], $[\mathrm{KN}],[\mathrm{K}]$. We have only S_{1}, S_{2} with $S_{1}+S_{2}=-I$ and $S_{1} S_{2}=-I$. Choosing $S=-S_{1}$ with eigenvalues $\lambda_{1}=-\frac{1}{\Phi}$ and $\lambda_{2}=\Phi$ with $\Phi=\frac{1}{2}(1+\sqrt{5})$ (golden section), we have $q=-2 p$ and hence $p=1,2,3,4$ corresponds to $q=3,1,4,2$ modulo 5 . The sets $W_{p} \subset E_{2}$ are as follows. Let $\alpha_{j}=\pi_{2}\left(e_{j}\right)$. Clearly W_{1} is the convex hull of $\alpha_{1}, \ldots, \alpha_{5}$, a pentagon. W_{2} in turn is the convex hull of all $\alpha_{j}+\alpha_{k}$ with $j \neq k$. The extremal points (generating the convex hull) are sums of direct neighbors. These are the points $\alpha_{i-1}+\alpha_{i+1}=S_{1}\left(a_{i}\right)$ (recall that $\alpha_{i} \in E_{2}$ corresponds to the unit root $\omega_{2 i}$ under the identification (1)). Hence W_{2} is the pentagon with vertices $S_{1}\left(\alpha_{j}\right)$ and $W_{3}=-W_{2}$ the one with vertices $-S_{1}\left(\alpha_{j}\right)=S\left(\alpha_{j}\right)$. Consequently $S\left(W_{1}\right)=W_{3}$, and the condition (12) is satisfied for $p=1, q=3$. The same argument holds for $p=4$, $q=2$, and the condition is trivially satisfied for the two remaining pairs (p, q) since $W_{p} \supset W_{q}$. Hence S is an inflation map; in fact it defines the subdivision described in the introduction. The inflation tiling is obtained by applying $S^{-1}=S_{2}$.

9. The "Heprose" case

In the case $n=7$, the map S_{1} has three eigenvalues $\lambda_{k}=2 \cos (2 \pi k / 7)$ for $k=1,2,3$ with $\lambda_{1} \approx 1.247, \lambda_{2} \approx-0.445, \lambda_{3} \approx-1.802$ (cf. figure in Section 6), corresponding to the eigenspaces E_{1}, E_{2}, E_{3}. According to (4), S_{2} and S_{3} have the same eigenvalues in different order as displayed below. In particular the table shows that S_{2} is an expansion on $F=E_{2}+E_{3}$ and hence some power of S^{2} is an inflation map.

	E_{1}	E_{2}	E_{3}
S_{1}	λ_{1}	λ_{2}	λ_{3}
S_{2}	λ_{2}	λ_{3}	λ_{1}
S_{3}	λ_{3}	λ_{1}	λ_{2}

The index is changed by every S_{j} from p to $q \equiv 2 p \bmod 7$, i.e. $p \mapsto q$ is the order 3 permutation

$$
\begin{equation*}
1 \mapsto 2 \mapsto 4 \mapsto 1, \quad 3 \mapsto 6 \mapsto 5 \mapsto 3 \tag{14}
\end{equation*}
$$

The windows look more complicated than in the case $n=5$: As explained in Section 7, W_{1} is the convex hull of $\pi_{F}\left(e_{j}\right)=\pi_{2}\left(e_{j}\right)+\pi_{3}\left(e_{j}\right)$ for $j=1, \ldots, 7$. Using (1) we identify F with \mathbb{C}^{2} and we get $\pi_{F}\left(e_{j}\right)=$ $\left(\omega^{2 j}, \omega^{3 j}\right)$ where $\omega:=e^{2 \pi i / 7}$. Hence W_{1} is the convex hull of the set

$$
P_{1}=\left\{\left(\omega^{2 j}, \omega^{3 j}\right) ; j=1, \ldots, 7\right\} \subset \mathbb{C}^{2}
$$

which lies on a Clifford torus $S^{1} \times S^{1} \subset \mathbb{C} \times \mathbb{C}$ as drawn in the subsequent figure (identify parallel edges of the square).

W_{2} in turn is the convex hull of $\pi_{F}\left(e_{j+k}+e_{j-k}\right)=\pi_{F}\left(S_{k} e_{j}\right)=$ $\left(S_{k} \pi_{2} e_{j}, S_{k} \pi_{3} e_{j}\right)$ for $k=1,2,3$. The corresponding point sets are contained in three different Clifford tori:

$$
\begin{aligned}
& P_{21}=\left\{\left(\lambda_{2} \omega^{2 j}, \lambda_{3} \omega^{3 j}\right) ; j=1, \ldots, 7\right\}, \\
& P_{22}=\left\{\left(\lambda_{3} \omega^{2 j}, \lambda_{1} \omega^{3 j}\right) ; j=1, \ldots, 7\right\}, \\
& P_{23}=\left\{\left(\lambda_{1} \omega^{2 j}, \lambda_{2} \omega^{3 j}\right) ; j=1, \ldots, 7\right\} .
\end{aligned}
$$

Now we see that S_{2} is not an inflation map: It maps W_{1} perfectly onto the convex hull of P_{22} but this is a proper subset of W_{2} as we shall see below.
W_{3} at last is the convex hull of the points $\pi_{F}\left(e_{j}+e_{j+k}+e_{j-l}\right)$ with $j=1, \ldots, 7$ and $(k, l)=(1,1),(2,2),(3,3),(1,2),(2,1)$. In the first three cases we have $\pi_{F}\left(e_{j}+e_{j-k}+e_{j+k}\right)=\pi_{F}\left(\left(I+S_{k}\right) e_{j}\right)$ and we obtain the three point sets

$$
\begin{aligned}
& P_{31}=\left\{\left(\left(1+\lambda_{2}\right) \omega^{2 j},\left(1+\lambda_{3}\right) \omega^{3 j}\right) ; j=1, \ldots, 7\right\}, \\
& P_{32}=\left\{\left(\left(1+\lambda_{3}\right) \omega^{2 j},\left(1+\lambda_{1}\right) \omega^{3 j}\right) ; j=1, \ldots, 7\right\}, \\
& P_{33}=\left\{\left(\left(1+\lambda_{1}\right) \omega^{2 j},\left(1+\lambda_{2}\right) \omega^{3 j}\right) ; j=1, \ldots, 7\right\} .
\end{aligned}
$$

In the two remaining cases we get for $j=7$:

$$
\begin{aligned}
& \pi_{F}\left(e_{7}+e_{1}+e_{5}\right)=\left(\omega^{7}+\omega^{2}+\omega^{3}, \omega^{7}+\omega^{3}+\omega^{1}\right)=:\left(\eta_{1}, \eta_{2}\right) \\
& \pi_{F}\left(e_{7}+e_{2}+e_{6}\right)=\left(\omega^{7}+\omega^{4}+\omega^{5}, \omega^{7}+\omega^{6}+\omega^{4}\right)=:\left(\eta_{3}, \eta_{4}\right)
\end{aligned}
$$

and hence the corresponding point sets are

$$
\begin{aligned}
& P_{34}=\left\{\left(\omega^{2 j} \eta_{1}, \omega^{3 j} \eta_{2}\right) ; j=1, \ldots, 7\right\}, \\
& P_{35}=\left\{\left(\omega^{j j} \eta_{3}, \omega^{3 j} \eta_{4}\right) ; j=1, \ldots, 7\right\} .
\end{aligned}
$$

(It might be interesting to note that $\left|\eta_{i}\right|=\sqrt{2}$ for $i=1,2,3,4 .^{7}$) Since $W_{7-p}=-W_{p}$, we have finished the description of the windows.

Now we have seen that all W_{p} are convex hulls of a union of point sets $P=P_{i j}$ which have a common form:

$$
\begin{equation*}
P=\left\{\left(\omega^{2 j} \alpha, \omega^{3 j} \beta\right) ; j=1, \ldots, 7\right\} \tag{15}
\end{equation*}
$$

for some $\alpha, \beta \in \mathbb{C}^{*}$. How can we understand the convex hull $\mathrm{CH}(P)$ of the set P ? This is a subset of $\mathbb{C} \times \mathbb{C}=\mathbb{R}^{4}$ which may be hard to imagine, but we can draw its intersection with the plane $E_{o}:=\mathbb{R} \alpha \times \mathbb{R} \beta$ which is at the same time its projection onto this plane (cf. subsequent figure). In the figure we have drawn the planes E_{2}, E_{3} and E_{o}. E.g. the point $25 \in E_{o}$ is the intersection of E_{o} with line segment between the points $2:=\left(\omega^{2 \cdot 2} \alpha, \omega^{3.2} \beta\right)$ and $5:=\left(\omega^{2 \cdot 5} \alpha, \omega^{3.5} \beta\right)$. Hence $\operatorname{CH}(P) \cap E_{o}$ is the convex hull or the four points $00=(\alpha, \beta), 25,16$ and 34 as shown in the figure below. The coordinates of these vertices with respect to the basis α, β are easily read off from the figure: $00=(1,1), 25=\frac{1}{2}\left(\lambda_{3}, \lambda_{1}\right)$, $16=\frac{1}{2}\left(\lambda_{2}, \lambda_{3}\right), 34=\frac{1}{2}\left(\lambda_{1}, \lambda_{2}\right)$.

Now we can test which of the maps $S= \pm S_{1}^{k_{1}} S_{2}^{k_{2}} S_{3}^{k_{3}}$ are inflation maps. A necessary condition is that $S\left(W_{1}\right) \supset S\left(W_{s}\right)$ where $s= \pm 2^{k}$ with $k=k_{1}+k_{2}+k_{3}$ is the diagonal eigenvalue of S. If $k=1$ then S_{2} is the only candidate which is an expansion on F. But it fails to satisfy $S_{2}\left(W_{1}\right) \supset W_{2}$ since $S_{2}\left(W_{1}\right) \not \supset \mathrm{CH}\left(P_{21}\right)$: the point $\left(\lambda_{2}, \lambda_{3}\right) \in \mathrm{CH}\left(P_{21}\right)$ is not contained in $\mathrm{CH}\left(S_{2} P_{1}\right) \subset S_{2}\left(W_{1}\right)$ which is the convex hull of the points $S_{2}(00)=\left(\lambda_{3}, \lambda_{1}\right), S_{2}(25)=\frac{1}{2}\left(\lambda_{3}^{2}, \lambda_{1}^{2}\right), S_{2}(16)=\frac{1}{2}\left(\lambda_{2} \lambda_{3}, \lambda_{3} \lambda_{1}\right)$,

[^5]
$S_{2}(34)=\frac{1}{2}\left(\lambda_{1} \lambda_{3}, \lambda_{2} \lambda_{1}\right)$ all of whose second coordinates are bigger than λ_{3}.

For similar reasons, $S_{2}^{2}=2 I+S_{3}$ (cf. (5)) as well fails to be an inflation map: Now we have $k=2$ and $s=4$, but $S_{2}^{2}\left(W_{1}\right) \not \supset W_{4}$ since the point $-\left(1+\lambda_{3}, 1+\lambda_{1}\right) \in-P_{32} \subset-W_{3}=W_{4}$ is not contained in $\mathrm{CH}\left(\left(2+S_{3}\right) W_{1}\right) \cap E_{o}$: The second coordinates of the generating points are $\frac{1}{2}\left(2+\lambda_{1}\right)$ multiplied by $2, \lambda_{1}, \lambda_{3}, \lambda_{2}$, and all these numbers are larger than $-\left(1+\lambda_{1}\right)$. There are no further candidates with $k=2$ since $S_{i} S_{j}=S_{l}^{-1}$ when $\{i, j, l\}=\{1,2,3\}$, and S_{l}^{-1} has two contracting eigenvalues.

The next case is $k=3$ and $s=8 \equiv 1 \bmod 7$, thus S preserves the index. In order to show the inflation property it suffices to show that $S(\mathrm{CH}(P)) \subset \mathrm{CH}(P)$ for each of the sets $P=P_{i j}$.
Lemma 9.1. S with $s \equiv 1 \bmod 7$ is an inflation map if and only if

$$
\begin{equation*}
S\left(W_{1} \cap E_{o}\right) \supset W_{1} \cap E_{o} . \tag{16}
\end{equation*}
$$

Proof. Clearly the condition (16) is necessary. But it is also sufficient: First of all, if the condition holds for $W_{1} \cap E_{o}=\mathrm{CH}\left(P_{1}\right) \cap E_{o}$, it also holds for $\mathrm{CH}(P) \cap E_{o}$ for each of the sets $P=P_{i j}$ since S acts in the same way in all cases. Further, due to the C_{7}-invariance of S, the condition still holds when we replace the plane $E_{o}=\mathbb{R} \alpha+\mathbb{R} \beta$ by one of the corresponding planes $\mathbb{R} \omega^{2 j} \alpha+\mathbb{R} \omega^{3 j} \beta$. But then in particular $\left(\omega^{2 j} \alpha, \omega^{3 j} \beta\right) \in S(\mathrm{CH}(P))$, and since $\mathrm{CH}(P)$ is the convex hull of these points, we obtain $S(\mathrm{CH}(P)) \supset \mathrm{CH}(P)$ and hence $S\left(W_{j}\right) \supset W_{j}$.
Theorem 9.2. $S=S_{2}^{3}$ is an inflation map for any Heprose tiling.

Proof. We just have to show that the plane quadrangle with vertices $\left(\lambda_{3}, \lambda_{1}\right),\left(\lambda_{2} \lambda_{3}\right),\left(\lambda_{1}, \lambda_{2}\right),(2,2)$ is contained in its image under the diagonal matrix $\operatorname{diag}\left(\lambda_{3}^{3}, \lambda_{1}^{3}\right)$, see figure!!

The inflation subtiling of a given tiling is obtained by applying $S^{-1}=$ S_{2}^{-3} (cf. Section 4. We have $S_{2}^{-1}=S_{1} S_{3}=-\left(S_{1}+1\right)$, hence

$$
S_{2}^{-3}=-\left(S_{1}+1\right)^{3}=-\left(S_{1}^{3}+3 S_{1}^{2}+3 S_{1}+1\right)
$$

Using $S_{1}^{2}=2+S_{2}$ and $S_{1}^{3}=\left(2+S_{2}\right) S_{1}=2 S_{1}-S_{2}-1$ we obtain

$$
\begin{aligned}
S_{2}^{-3} & =-\left(2 S_{1}-S_{2}-1+6+3 S_{2}+3 S_{1}+1\right) \\
& =-\left(2 S_{1}-S_{2}+6-3 S_{3}-3\right) \\
& =-2 S_{1}+S_{2}+3 S_{3}-3
\end{aligned}
$$

where we have used the identity $S_{1}+S_{2}+S_{3}+1=0$. Thus the inflation factor is $2\left|\lambda_{1}\right|+\mid$ lambda $a_{2}|+3| \lambda_{3} \mid+3$ which we can see in the examples displayed below.

There are still other candidates S of order $k=3$: consider the map

$$
S:=S_{1} S_{2}^{2}=S_{1}\left(2+S_{3}\right)=2 S_{1}-S_{1}-1=S_{1}-1
$$

Its eigenvalues $1-\lambda_{1} \approx 0.247,1-\lambda_{2} \approx 1.445, q-\lambda_{3} \approx 2.802$ have the right behavior. However, as it turns out, the condition (16) is violated (cf Figure!!). On the other hand, only a small portion of $W_{1} \cap E_{o}$ is outside $S\left(W_{1} \cap E_{o}\right)$. Hence very few vertex points of the inflation tiling do not belong to the original tiling. In the example displayed below there are no errors visible. Passing to $S^{2}=S_{1}^{2} S_{2} S_{2}^{3}$, we get a true inflation map; this is independent of the previous one, S^{3}, since $S_{1}^{2} S_{2}$ is not an inflation map. Note that

$$
S^{\prime}:=S^{1} S_{3}^{2}=S_{1}\left(2+S_{1}\right)=2 S_{1}+S_{2}+2
$$

is the inverse of S since $S S^{\prime}=\left(S_{1} S_{2} S_{3}\right)^{2}=I$. This shows the inflation factor of S, and we also see that there are no further examples with $k=3$.

10. Displaying the new patterns

Let E_{a} be a r-dimensional affine subspace of $\mathbb{R}^{n}, r<n$, whose points have at most r integer coordinates ("general position"). An integer grid point $z \in \mathbb{Z}^{n}$ is admissible iff there is some $x \in E_{a}$ such that $z \in x+I^{n}$, or in other words, $\left(z-I^{n}\right) \cap E_{a} \neq \emptyset$.

Stated slightly differently, $z \in \mathbb{Z}^{n}$ is admissible if the subspace E_{a} intersect the closed n-cube $z-\bar{I}^{n}$ in a point x^{\prime} with r integer values, say $x_{i_{1}}^{\prime}=z_{i_{1}}-c_{1}, \ldots, x_{i_{r}}^{\prime}=z_{i_{r}}-c_{r}$ where $1 \leq i_{1}<\cdots<i_{r} \leq n$, such that $c_{1}, \ldots, c_{r} \in\{0,1\}$. Conversely, for any point $x^{\prime} \in E_{a}$ with r
integer coordinates the integer vector $z=\left\lceil x^{\prime}\right\rceil$ is admisible (where $\left\lceil x^{\prime}\right\rceil$ denotes the integer vector z with coordinates $z_{j} \in\left[x_{j}^{\prime}, x_{j}^{\prime}+1\right)$).

Any admissible point z is the lowest vertex of an admissible r-cube $z+f$ where $f \subset \bar{I}^{n}$ is an r-face of the unit cube \bar{I}^{n}, and the admissibla r-faces $z+f$ project onto tiles in E_{a}. The neighbors of z in $z+f$ are precisely the $\binom{n}{r}$ integer points z^{\prime} with $z_{j}^{\prime}-z_{j}=0$ for $j \notin\left\{i_{1}, \ldots, i_{r}\right\}$ and $z_{j}^{\prime}-z_{j} \in\{0,1\}$ for $j \in\left\{i_{1}, \ldots, i_{r}\right\}$.

Checking admisibility of a tile reduces therefore to check for admisibility of its vertex z with lowest coordinate values. This is simply done by finding the corresponding x^{\prime} from z by solving the following equations and then checking if $z^{\prime}=\left\lceil x^{\prime}\right\rceil$:

$$
\begin{aligned}
& x_{i_{k}}^{\prime}=z_{i_{k}}^{\prime} \\
&\left\langle x_{j}^{\prime}, v_{j}\right\rangle \text { for } k=1, \ldots, r \\
& \text { for } j=1, \ldots, n-r
\end{aligned}
$$

where $a \in E_{a}$, and $\left(v_{j}\right)_{j=1, \ldots, n-r}$ is a basis of the linear subspace E_{a}^{\perp} perpendicular to E_{a}.

In the " n-rose" case $E_{a}=E_{1}+a$ we choose for $\left(v_{j}\right)$ the set of those eigenvectors v_{ω} of the cyclic permutation matrix A which are perpendicular to E_{1}, i.e. the $\omega \neq \omega_{1}, \bar{\omega}_{1}$ where $\omega_{1}=e^{2 \pi i / n}$ (cf. Section 5). Since x^{\prime} in the above equations is real, it does not matter if v_{ω} is a complex vector.

We have displayed the three symmetric Heprose tilings for $E_{j d}$ with $j=1,2,3$ togegther with their inflation tilings by $-S_{1}^{-3}$ and the quasiinflation tilings by $\left(S_{1} S_{2}^{2}\right)^{-1}$. (see figures!!)

11. "Elevenrose" tilings

We briefly discuss the next prime number $n=11$. Here we have five planes $E_{k}, k=1, \ldots, 5$ and five generating invariant matrices S_{1}, \ldots, S_{5} with eigenvalues $\lambda_{k}=2 \cos (2 \pi k / 11)$. According to (4), the eigenvalues of S_{l} on E_{k} are as in the table below. The last line shows that $S=S_{2} S_{3}^{3}$

	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
S_{1}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}
S_{2}	λ_{2}	λ_{4}	λ_{5}	λ_{3}	λ_{1}
S_{3}	λ_{3}	λ_{5}	λ_{2}	λ_{1}	λ_{4}
S_{4}	λ_{4}	λ_{3}	λ_{1}	λ_{5}	λ_{2}
S_{5}	λ_{5}	λ_{1}	λ_{4}	λ_{2}	λ_{3}
$S_{2} S_{3}^{3}$	-0.019	9.255	1.101	1.356	-3.780

satisfies the condition (6) and hence some power of S is an inflation
map. We conjecture that there are inflation maps for any " n-rose" tiling if $n \geq 5$ is prime.

12. DISCUSSION

There are three types of "Heprose" tilings with full D_{7}-symmetry, and each of them is self similar in the sense that its vertex set is mapped to a proper subset by a homothety, even in several different ways. Further, there is an uncountable number of tilings without D_{7}-symmetry, and again a subset of its vertex set is a homothetic image of the vertex set of (another) such tiling. Further, each of these tilings is arbitrarily close to the symmetric ones after some (maybe very large) translation. All these properties are shared with the Penrose tilings.

However, the tiles are cut into rather complicated pieces by the edges of the coarser tiling, and each large tile allows a huge (but finite) number of different subtilings. Therefore, unlike in the Penrose case, it would not be possible to obtain such tilings from repeatedly subdividing a tile and enlarging the pieces: since the decomposition is not unique, we do not know the right subdivision to take.

There are other tilings related to the heptagon where the tiles do have a fixed decomposition (cf. [D]), however they do not arise by projection and they do not allow a precise D_{7} symmetry. In this way, the original Penrose tiling is extremely special since it satisfies all these properties jointly.

References

[dB] N.G. de Bruijn: Algebraic theory of Penrose non-periodic tilings of the plane, Indag. Math. 43, 27-37
[D] L. Danzer:
[ER] J.-H. Eschenburg, H.J. Rivertz: Ikosahedral Penrose tilings, in preparation
[KN] P. Kramer, R. Neri: On periodic and non-periodic space fillings of E^{m} obtained by projection, Acta Cryst. A40 (1984), 580-587
[K] A. Kreibich: Aperiodische Pflasterungen, Diplom thesis Augsburg 2000
[P] R. Penrose: Pentaplexity - a class of nonperiodic tilings of the plane, Mathematical Intelligencer 2 (1979), 32-37
[Sh] D.Shechtman et al.: Metallic phase with long-ranged orientational order and no translational symmetry, Phys. Review Letters 53 (1984), 1951 1953
[S] D. Stern: Penrose type tilings, Diplom thesis Augsburg 2002

E-mail address: eschenburg@math.uni-augsburg.de
E-mail address: Hans.Jakob.Rivertz@nr.no

[^0]: ${ }^{1}$ cf. http://www.solid.phys.ethz.ch/ott/staff/beeli/Structural_investigation.html

[^1]: ${ }^{2}$ Generated from http://www.geom.umn.edu/apps/quasitiler/start.html

[^2]: ${ }^{3}$ Claim: $\pi_{F}\left(\mathbb{Z}^{n}\right)$ is dense in F for any irrational subspace $F \subset \mathbb{R}^{n}$. In fact, $\pi_{F}\left(\mathbb{Z}^{n}\right)$ is a subgroup of the additive (translation) group of F. Suppose it is not dense in F. Then its closure is of the form $F^{\prime} \times \Delta$ where F^{\prime} is a proper linear subspace of F and Δ a discrete group of translations. Thus $\mathbb{Z}^{n} \subset\left(F^{\perp} \oplus F^{\prime}\right) \times \Delta$. The subspace $F^{\perp} \oplus F^{\prime}$ is generated by integer vectors v_{1}, \ldots, v_{p}. There is a nonzero integer solution x of the integer linear system $\left\langle v_{i}, x\right\rangle=0, i=1, \ldots, p$ (obtained by applying elementary transformations). In particular $x \perp F^{\perp}$ and hence x is an integer vector in F.

[^3]: ${ }^{4}$ However in many cases S is somewhat less than integer invertible, see below.

[^4]: ${ }^{5}$ The rational irreducibility of W is seen as follows. Let W^{c} and E_{k}^{c} be the complexifications of W and E_{k}. The 2-dimensional subspaces E_{k}^{c} are inequivalent D_{n}-modules. Thus any D_{n}-module $W_{1} \subset W$ is a sum of some of the E_{k}. On the other hand, a nonzero rational vector $v=\sum \lambda_{\omega} v_{\omega} \in W^{c} \cap \mathbb{Q}^{n}$ has only nonzero coefficients, $\lambda_{\omega} \neq 0$ for all ω. In fact, since v is rational and $v_{\omega} \in \mathbb{K}^{n}$ where $\mathbb{K}=\mathbb{Q}(\omega)$ (i.e. the smallest field containing \mathbb{Q} and the n-th unit roots), we may assume that all $\lambda_{\omega} \in \mathbb{K}$. Now $v \in \mathbb{Q}^{n}$ iff $v^{\sigma}=v$ for all $\sigma \in G_{\mathbb{K}}$ where $G_{\mathbb{K}}$ denotes the Galois group of \mathbb{K} over \mathbb{Q}. Each $\sigma \in G_{\mathbb{K}}$ is of the type $\omega \mapsto \omega^{k}$ for $k \in\{1, \ldots, n-1\}$. Hence $v^{\sigma}=\sum_{\omega} \lambda_{\omega}^{\sigma} v_{\omega^{k}}$, and $v^{\sigma}=v \operatorname{iff}\left(\lambda_{\omega^{-k}}\right)^{\sigma}=\lambda_{\omega}$ for all ω. Hence, if $\lambda_{\omega} \neq 0$ for

[^5]: ${ }^{7}\left(1+\omega+\omega^{3}\right)\left(1+\bar{\omega}+\bar{\omega}^{3}\right)=\sum_{k=1}^{3}\left(\omega^{k}+\bar{\omega}^{k}\right)+3$.

