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Abstract. We extend Ferus’ characterization of extrinsic symmetric spaces
to ambient spaces with indefinite inner products.

1. Introduction

Let V be a finite dimensional real vector space with a non-degenerate scalar
product (metric) 〈 , 〉. A linear subspace W ⊂ V is called nondegenerate if 〈 , 〉|W
remains non-degenerate (which is trivially satisfied if the inner product is positive
definite), otherwise W is called degenerate. A smooth submanifold M ⊂ V is called
non-degenerate if so is each of its tangent spaces TxM ⊂ V , x ∈ M . Then M
inherits a semi-Riemannian metric from V . Now for any x ∈ M we consider the
reflection at the affine normal space x + NxM where NxM = TxM⊥; this is the
affine isometry sx : V → V with

sx(x) = x, s∗|TxM = −I, s∗|NxM = I.

A nondegenerate submanifold M ⊂ V will be called extrinsically symmetric if
sx(M) = M for all x ∈ M . Viewed as a semi-Riemannian manifold with the
induced metric, M is a symmetric space since sx|M is an isometric point reflec-
tion for any x ∈ M . Extrinsic symmetric submanifolds are characterized by the
property ∇α = 0 where α : S2(TM) → NM is the second fundamental form and
∇α : S3(TM) → NM its covariant derivative. In fact, every extrinsic symmetric
submanifold satisfies this property since each sx preserves ∇αx but sx = −I on
S3(TxM) (three signs) while sx = I on NxM . The converse statement is a theorem
of Ferus [4] and Strübing [9].

A rich set of examples is obtained as follows. Let G be a connected Lie group and
assume that its Lie algebra g is equipped with an Ad(G)-invariant inner product
and an orthogonal Cartan decomposition g = k ⊕ V , i.e.

[k, k] ⊂ k, [k, V ] ⊂ V, [V, V ] ⊂ k. (1)

The connected Lie group K ⊂ G with Lie algebra k acts on V by the adjoint action;
in fact this is the isotropy representation of the symmetric space G/K. Then an
orbit M = Ad(K)x with x ∈ V is extrinsic symmetric iff

ad(x)3 = λ ad(x) (2)

for some λ 6= 0 (cf. [5], [3]). If λ = −1, the extrinsic symmetry at x is sx =
exp(π ad(x)). For λ < 0, this is just a normalization of x; for λ > 0 we pass to the
dual Lie algebra g∗ = k ⊕ iV ⊂ g ⊗ C where i =

√
−1. These extrinsic symmetric

spaces will be called of Ferus type (see below). Most Riemannian symmetric spaces
(the so called symmetric R-spaces, including Grassmannians, conjugacy classes of
real and complex structures, hermitian symmetric spaces and the Lie groups SOn,
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Un, Spn) can be isometrically embedded as extrinsic symmetric submanifolds of
Ferus type.

In general, if M ⊂ V is extrinsic symmetric, we let

K̂ = 〈sx; x ∈ M〉 ⊂ O(V ) (3)

be the group generated by all reflection sx. The affine map sx will be called extrinsic
symmetry at x, and the group K̂ is the symmetry group of M . We denote its
connected component K (the transvection group) and its Lie algebra by k. We call
M ⊂ V full if it does not lie in a proper affine subspace, and indecomposable if there
is no nontrivial orthogonal splitting V = V1 ⊕V2 and M = M1 ×M2 with Mi ⊂ Vi.

Dirk Ferus has given the following characterization of extrinsic symmetric spaces
in the case where the inner product is positive definite:

Theorem: (Ferus [4],[5]) Let M ⊂ V (1) full, (2) indecomposable, (3) extrinsic
symmetric. Then we have:

(A) The vector space g := k ⊕ V carries the structure of a Lie algebra with
Cartan decomposition, and the action of K on V is the the adjoint action
of K restricted to V ⊂ g.

(B) M is the K-orbit of an element x ∈ V with ad(x)3 = λ ad(x) for some
λ 6= 0 (i.e. it is of Ferus type).

It is the aim of the present paper to generalize this theorem to the case where the
inner product is indefinite. Let us briefly discuss the assumption of Ferus’ theorem
under this view point. On the one hand, the fullness assumption (1) seems too
strong; one would like to discuss the case where M is contained in a proper subspace
W ⊂ V where the inner product is degenerate (otherwise we could just pass to W in
place of V ). However, projecting M ⊂ W onto the quotient vector space W/ ker s|W
where the induced inner product is nondegenerate, we restore the assumption of
the theorem, see Section 2. On the other hand, the indecomposability assumption
(2) is much weaker in the indefinite case since it allows for nontrivial (degenerate)
K-invariant affine subspaces of V which even may be contained in M . However,
we are still able to prove essential parts of Ferus’ theorem. The result involves the
shape operator (Weingarten map) SH(v) = −∂vH for the mean curvature vector
H = tr α where α is the second fundamental form of M , i.e. α(v, w) = (∂vw)N .

Theorem A. Let M ⊂ V be a (possibly immersed) nondegenerate submanifold
which is (1) full, (2) indecomposable, (3) extrinsic symmetric. Then the vector
space g := k ⊕ V carries the structure of a Lie algebra with Cartan decomposition,
and the linear part of the (affine) action of K on V is the the adjoint action of K
restricted to V ⊂ g.

Theorem B. Under the above assumptions, M is of Ferus type unless S2
H = 0.

The present work is based on the 2005 thesis [7] of the first named author. Previ-
ously, Naitoh [8] had proved Theorem B by a different method under the additional
assumption that there is an umbilic normal vector field. Recently, I. Kath [6] has
given a full description of indefinite extrinsic symmetric spaces.

It is our pleasure to express our warmest thanks to Ines Kath for many suggestions
and helpful conversations. We also would like to thank the referee for his very
helpful suggestions.

2. The fullness assumption

Let us assume that M ⊂ V is an extrinsic symmetric space lying in some proper
linear subspace W ⊂ V . If the inner product is nondegenerate on W , we may
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replace W by V . The interesting case is when 〈 , 〉|W is degenerate, but still M is
nondegenerate. Let

N = ker 〈 , 〉|W = {n ∈ W ; 〈n,w〉 = 0 ∀w∈W }.
Then W̄ = W/N inherits a nondegenerate inner product from 〈 , 〉|W . Since any
tangent space TxM is nondegenerate, it does not intersect N , and thus the canonical
projection π : W → W̄ is an immersion on M . Moreover, π is an isometry, hence
it conjugates the reflection at the normal spaces of M ⊂ W and π(M) ⊂ W̄ which
shows that π : M → W̄ is extrinsic symmetric. Hence we have proved:

Theorem 2.1. Let W be a real vector space with a possibly degenerate inner product
s = 〈 , 〉 and M ⊂ W a (possibly immersed) extrinsic symmetric submanifold. Let
N = ker s and let π : W → W̄ = W/N be the canonical projection. Then the
vector space W̄ inherits a nondegenerate inner product which makes π isometric,
and π|M : M → W̄ is an extrinsic symmetric immersion.

A simple example is W = R
2 with the inner product 〈x, y〉 = x1y1 where we let M

be the graph of a parabola, M = {(u, tu2); u ∈ R} for arbitrary t ∈ R. For any
x = (u, tu2) ∈ M we have TxM = R(1, 2tu) while NxM is always the vertical line
N = R(0, 1). The reflection sx fixes x while its differential (sx)∗ fixes the vector
e2 = (0, 1) and maps (1, 2tu) to −(1, 2tu). Thus for any y = (v, tv2) ∈ M we have
sx(v, tv2) = (w, tw2) ∈ M with w = 2u − v, hence M is extrisic symmetric. The
projection π : (u, v) 7→ u maps M onto the real line (the x1-axis) with its trivial
extrinsic symmetric structure.

x

M

T M

N M

x

x

x
s

Remark. More generally, suppose we have a nondegenerate inner product space
W̄ containing an (immersed) extrinsic symmetric submanifold M̄ ⊂ W̄ . Let W =
W̄ ⊕ N with zero inner product on N , and let π : W → W̄ be the projection onto
the first factor. We may ask for all (immersed) extrinsic symmetric M ⊂ W with
π(M) = M̄ . As the above example suggests, this is a nontrivial problem, cf. [6].

3. Constructing the Lie bracket

From now on we assume fullness. The idea for the proof of Theorem A is to
adapt a method of [3] which gives an alternative proof of Ferus’ Theorem for pos-
itive definite inner products. Let M ⊂ V be full and extrinsic symmetric and K
its symmetry group as above. Fix some x ∈ M . Let k = k+ + k− be the Cartan
decomposition of k corresponding to the extrinsic symmetry sx, i.e. conjugation
with sx on k fixes k+ and anti-fixes k−. The linear map sending A ∈ k− onto
Ax ∈ TxM is an K-equivariant isomorphism between k− and TxM ; its inverse will
be called v 7→ tv : TxM → k−. In fact, the map tv is the infinitesimal transvection
in v-direction, i.e. the affine isometries kv(t) = exp ttv ∈ K form the one-parameter
group of transvections along the geodesic γv whose differential is the parallel trans-
port along γ in both the tangent and normal bundles. Obviously, the linearized
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action of k+ (being the Lie algebra of the isotropy group K+ = Kx) preserves the
splitting V = V+ + V− where

V+ = NxM, V− = TxM (4)

On the other hand, the linearized action of k− reverses this splitting since by dif-
ferentiating a Levi-Civita-parallel tangent (resp. normal) vector field along γv we
obtain a normal (resp. tangent) vector field. More precisely, for any v, w ∈ V− and
ξ ∈ V+ we have

tvw = α(v, w), tvξ = −Sξ(v) (5)

where Sξ : V− → V− denotes the shape operator or Weingarten map defined by

Sξ(v) = −(∂vξ)T , 〈Sξ(v), w〉 = 〈α(v, w), ξ〉. (6)

Since the linear maps t : p− → k−, v 7→ tv and S : V+ → S(V−), ξ 7→ Sξ are
equivariant with respect to the action of k+, we have for all A ∈ k+:

[A, tv] = tA∗v, [A∗, Sξ] = SA∗ξ. (7)

First we construct a certain Ad(K)-invariant inner product on k. Using the K+-
equivariant isomorphism T : V− → k− we may transplant the inner product on V−

to k−:
〈tv, tw〉k− = 〈v, w〉. (8)

This is extended to all of k by declaring k+ ⊥ k− and defining the metric on k+ as
follows:

〈A, [tv, tw]〉k+ = 〈[A, tv], tw〉k− = 〈Av,w〉, (9)

for any v, w ∈ TxM . In fact, according to the subsequent lemma we have [k−, k−] =
k+, hence [tv, tw] is a generic element of k+. We must show that the metric is well
defined by (9), in other words that 〈Av,w〉 only depends on B := [tv, tw]. We will
use the general formula

[ta, tb]c = −R(a, b)c (10)

for the curvature tensor R of the symmetric space M . Putting A = [ta, tb] for some
a, b ∈ TxM we find 〈Av,w〉 = 〈[ta, tb]v, w〉 = −〈R(a, b)v, w〉 = −〈R(v, w)a, b〉 =
〈[tv, tw]a, b〉 = 〈Ba, b〉. Clearly, the metric is k+-invariant, and from (9) it is also
k−-invariant since 〈Av,w〉 = 〈[A, tv], tw〉.

It remains to show that this inner product is non-degenerate. Since the k−-part
is nondegenerate (being a copy of the V−-part), it is enough to prove nondegeneracy
for the k+-part. If this is degenerate, there exists a nonzero Ao ∈ k+ with 〈Aov, w〉 =
0 for all v, w ∈ TxM , cf. (9), hence Aov = 0 for all v which contradicts to the
effectivity of the isotropy action.

Lemma 3.1. (cf. [2]) [k−, k−] = k+.

Proof. This is only due to the fact that Ko is generated by the transvections. In
fact, let k1 = k−+[k−, k−]. From the Cartan relations [k−, k+] ⊂ k− and [k−, k−] ⊂ k+
we have [k−, [k−, k−]] ⊂ [k−, k+] ⊂ k− (Lie triple property) and therefore k1 ⊂ k is
a Lie subalgebra. Let K1 ⊂ K be the corresponding connected Lie subgroup. We
need to show that all transvections sysz for any two y, z ∈ M belong to K1. It
suffices to show this when y and z are connected by a geodesic γ: In general there
is only a geodesic polygon connecting y and z, but labeling its vertices y = y0,
y1, . . . , yk = z, we have sysz = sy0

sy1
sy1

sy2
. . . syk−1

syk
and hence it suffices to

show syi−1
syi

∈ K1.
Thus we assume that y and z lie on a common geodesic γ with (say) γ(0) = z

and γ(1/2) = y. We want to show sysz ∈ K1. If z = x, this is obvious since
then sysx = exp tv ⊂ exp k− where v = γ′(0). For an arbitrary geodesic segment
γ : [0, 1] → M we put

τγ = sγ(1/2)sγ(0).



INDEFINITE EXTRINSIC SYMMETRIC SPACES 5

This is the transvection along γ sending γ(0) to γ(1). Likewise for a geodesic
polygon p = γ1 ∗ · · · ∗ γk (concatenation of k geodesic segments) we put τp =
τγk

. . . τγ1
. By induction over k we claim τp ∈ K1 for any geodesic polygon p

starting at our base point x. This is clear for k = 1. In the general case we
let p = p′ ∗ γ where γ = γk and p′ = γ1 ∗ · · · ∗ γk−1. By induction hypothesis
τp′ ∈ K1. Further, the geodesic β = τ−1

p′ ◦ γ starts at x, and hence τβ ∈ K1 whence

τγ = τ−1
p′ τβτp′ ∈ K1.

Now let y, z ∈ M be as above. We have to make sure that sysz = τγ is contained
in K1. Join x to z by a geodesic polygon p. Then τp ∈ K1, and the geodesic
β = τ−1

p ◦ γ starts at x. Thus τβ ∈ K1 whence τγ = τpτβτ−1
p ∈ K1. �

Next we define a skew symmetric product [ , ] on

g = k + V (11)

extending the Lie product on k as follows. For any A ∈ k and v, w ∈ V we define
[A, v] ∈ V and [v, w] ∈ k by

[A, v] = A∗v, 〈[v, w], A〉k = 〈Av,w〉. (12)

Note that

[v, w] = [tv, tw] = R(v, w), (13)

since 〈A, [tv, tw]〉 = 〈[A, tv], tw〉 = 〈tAv, tw〉 = 〈Av,w〉.
By [3], p. 518–519, we have defined a Lie algebra stucture on g (the main

work amounts to proving the Jacobi identity for all u, v, w ∈ V ⊂ g) with Cartan
decomposition (11), and the direct sum metric on g = k + V is ad(g)-invariant.
Further,

g+ := k+ ⊕ V+ (14)

is a subalgebra since 〈[V+, V+], k−〉g = 〈[k−, V+], V+〉g ⊂ 〈V−, V+〉 = 0. Putting

g− = k− ⊕ V−, (15)

we have a second Cartan decomposition,

g = g+ + g−. (16)

which is compatible to the first one. This finishes the proof of Theorem A.

4. Linearity of the action

Theorem 4.1. Let M ⊂ V be full, indecomposable and extrinsic symmetric. Sup-
pose that all affine normal spaces x+NxM , x ∈ M , have a nonempty intersection.
Then M is of Ferus type.

Proof. Up to translations we may assume that the common intersection of the affine
normal spaces contains the origin 0. Thus x ∈ NxM for all x ∈ M , and the extrinsic
symmetries sx are linear (fixing 0). Hence K̂ = 〈sx; x ∈ M〉 is a subgroup of the
orthogonal group O(V ). Now we fix x ∈ M and let V− = TxM and V+ = NxM .
Then for all v, w ∈ V− we have

ad(x)tv = −tvx = −v,
〈tw, ad(x)v〉 = 〈twx, v〉 = 〈w, v〉 = 〈tw, tv〉.

Further, k+ is the stabilizer subalgebra for x, hence for all A ∈ k+ and ξ ∈ V+ we
have [A, x] = 0 and 〈A, [x, ξ]〉 = 〈[A, x], ξ〉 = 0. Thus

ad(x)v = tv, ad(x)tv = −v, ad(x)|g+
= 0 (17)

showing M = Ad(K)x with ad(x)3 = − ad(x) which shows that M has Ferus
type. �
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Remark. The situation looks very similar to the case of positive definite inner
product. However note that x could be a light vector, i.e. 〈x, x〉 = 0. Otherwise, if
〈x, x〉 = s 6= 0, then M is contained in the “sphere” Ss = {x ∈ V ; 〈x, x〉 = s}, but
different from the positive definite case, it need not to be minimal inside Ss.

5. The Killing form

We have constructed a metric Lie algebra g = k+V equipped with two commuting
involutions σ, τ leading to the orthogonal decomposition

g = k+ + k− + V+ + V−. (18)

A very important tool is the Killing form B on the Lie algebra g which turns
out to be closely related to the second fundamental form α of M ⊂ V . Recall that
for any X,Y ∈ g we have

B(X,Y ) = trg ad(X) ad(Y ) =
∑

i

ǫi〈ad(X) ad(Y )Ei, Ei〉g (19)

where (Ei) is an orthonormal basis of g, i.e. 〈Ei, Ej〉 = ǫiδij with ǫi = ±1 . We
will choose this basis adapted to the orthogonal splitting (18).

Lemma 5.1. For any v, w ∈ V− and ξ, η ∈ V+ we have

B(v, w) = 2 trV−
(ad(v) ad(w)) + 2 trk−(ad(v) ad(w)),

B(tv, tw) = 2 trk−(ad(tv) ad(tw)) + 2 trV−
(ad(tv) ad(tw)),

B(ξ, η) = 2 trk−(ad(ξ) ad(η)) + 2 trk+(ad(ξ) ad(η)).

Proof. Due to the Cartan relations

[V, V ] ⊂ k, [g−g−] ⊂ g+, (20)

the linear map ad(v) is a skew symmetric transformation which maps V± to k∓
and vice versa. Likewise ad(tv) interchanges the two subspaces in each of the
pairs (V+, V−) and (k+, k−), and the same holds for ad(ξ) and the pairs (k−, V−)
and (k+, V+). This shows that the partial traces for B are the same on the two
components of each pair: E.g. on V+ + k− we have ad(v) =

(

A′

A

)

where A =
ad(v)|V+

and A′ = ad(v)|k− , but since ad(v)∗ = − ad(v), we have A′ = −A∗. Thus

trV++k−(ad(v) ad(w)) = trV++k−

(

−A∗

A

) (

−B∗

B

)

= trV++k−

(

−A∗B
−AB∗

)

= − tr(A∗B) − tr(AB∗),

and the latter two terms are equal. Using a similar argument on V− + k+ we obtain

trV++k−(ad(v) ad(w)) = 2 trk−(ad(v) ad(w)),
trV−+k+(ad(v) ad(w)) = 2 trV−

(ad(v) ad(w))

which shows the equality for B(v, w) = trg(ad(v) ad(w)). The other two equations
follow quite similarly. �

Lemma 5.2. For any v, w ∈ V− we have

B(v, w) = −2〈α(v, w),H〉 = B(tv, tw) (21)

where H = trV−
α.

Proof. Choosing an orthonormal basis (e1, . . . , em) of V−, we get

B(v, w) = 2
∑

ǫi〈ad(v) ad(w)ei, ei〉 + 2
∑

ǫi〈ad(v) ad(w)tei
, tei

〉
= −2

∑

ǫi〈[w, ei], [v, ei]〉 − 2
∑

ǫi〈tei
w, tei

v〉
= 2

∑

ǫi {〈R(w, ei)v, ei〉 − 〈α(ei, w), α(ei, v)〉}
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(G)
= −2

∑

ǫi〈α(ei, ei), α(v, w)〉 = −2〈H,α(v, w)〉,

B(tv, tw) = 2
∑

ǫi〈ad(tv) ad(tw)tei
, tei

〉 + 2
∑

ǫi〈ad(tv) ad(tw)ei, ei〉
= −2

∑

ǫi〈[tw, tei
], [tv, tei

]〉 − 2
∑

ǫi〈twei, tvei〉
= 2

∑

ǫi {〈R(w, ei)v, ei〉 − 〈α(ei, w), α(ei, v)〉}
(G)
= −2

∑

ǫi〈α(ei, ei), α(v, w)〉 = −2〈H,α(v, w)〉,

where (G) refers to the Gauss equations for M ⊂ V ,

〈R(a, b)c, d〉 = 〈α(a, d), α(b, c)〉 − 〈α(b, d), α(a, c)〉. (G)

This finishes the proof. �

Lemma 5.3. Let ξ, η ∈ V+ with ξ = α(v, w) = tvw. Then

B(ξ, η) = −2〈α(Sηv, w),H〉. (22)

Proof. B(ξ, η) = B(tvw, η) = −B(w, tvη) = B(w,Sηv)
(21)
= −2〈α(w,Sηv),H〉. �

Lemma 5.4. Let ξ, η ∈ V+ with [k+, η] = 0. Then

B(ξ, η) = −2 trV−
(SξSη). (23)

Proof. From Lemma 5.1 we obtain

B(ξ, η) = −2
∑

ǫi〈[ξ, tei
], [η, tei

]〉 − 2
∑

ǫj〈[ξ,Aj ], [η,Aj ]〉

where (Aj) denotes an orthonormal basis of k+. But the second term vanishes by
the assumption [η, k+] = 0, hence the claim follows using (5). �

6. The shape operators

Let M ⊂ V be extrinsic symmetric. As before, we fix some x ∈ M and let
V− = TxM and V+ = NxM . For all normal vectors ξ ∈ V+ we consider the shape
operators Sξ which are self adjoint endomorphisms of V−. Their commutators are
obtained from the Ricci equation

〈RN (v, w)η, ξ〉 = 〈[Sξ, Sη]v, w〉 (R)

for any v, w ∈ V− and ξ, η ∈ V+ where RN denotes the curvature tensor of the
normal bundle. If η can be extended to a normal vector field which is parallel, the
left hand side of (R) vanishes, hence the corresponding shape operator Sη commutes
with any Sξ.

Most important among the normal vectors is the mean curvature vector

H = tr α =
∑

ǫiα(ei, ei) (24)

where e1, . . . , em is an orthonormal basis of V−, i.e. 〈ei, ej〉 = ǫiδij with ǫi = ±1.
Since α is parallel, so are H and SH , and hence SH commutes with any Sξ (Ricci
equation).

Yet there are other parallel normal fields closely related to H, e.g.

H1 := tr α(SH ., .) =
∑

ǫiα(SHei, ei). (25)

Lemma 6.1.

SH1
= (SH)2. (26)
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Proof. We apply the lemmas 5.3 and 5.4 for ξ = α(v, w) and η = H. The two
expressions for −B(ξ,H) are

−B(ξ,H) = 2〈α(SHv, w),H〉 = 2〈SHSHv, w〉,
−B(ξ,H) = 2

∑

ǫi〈Sξei, SHei〉
= 2

∑

ǫi〈α(ei, SHei), ξ〉
= 2〈H1, ξ〉
= 2〈H1, α(v, w)〉 = 2〈SH1

v, w〉.
�

In the case where the metric on V is positive definite, SH is diagonalizable with
constant real eigenvalues λ, and TM splits into the mutually orthogonal eigendis-
tributions Eλ. Since SH is parallel, so are the Eλ, and any shape operator Sξ

preserves Eλ. Hence by indecomposability (Moore Lemma) there can be only one
eigenvalue λ. This must be nonzero since M cannot be minimal (cf. [1]).1 Now the
map M ∋ x 7→ x + λ−1H(x) ∈ V is constant which shows that M is contained in a
sphere S ⊂ V and M is of Ferus type.

In the indefinite case we arrive at the same conclusion when SH is diagonalizable
with real eigenvalues. But this cannot be concluded from the symmetry of SH

anymore. Therefore, as a first step, we replace the eigenspace decomposition by a
coarser one: For each eigenvalue λ ∈ C of SH we put

Eλ = ker(SH − λI)k

for a sufficiently large integer k. These generalized eigenspaces form the Jordan
decomposition of V c = V ⊗ C which by self adjointness of T = (SH − λI)k is
orthogonal with respect to the complexified inner product.2 A real decomposition
is obtained by combining conjugate pairs of eigenvalues λ and λ̄. The subspaces
Eλ + Eλ̄ form a real parallel decomposition of TM which again is Sξ-invariant for
any normal vector ξ. Using the lemma of Moore (cf. [1]), we may conclude from
the indecomposability that there is just one conjugate pair λ, λ̄ of eigenvalues of
SH (which of course might be equal).

But we can do better. We consider the space P of all parallel real normal
fields on M . Since all shape operators Sη with η ∈ P commute with each other,
they preserve each other’s generalized eigenspaces, and we can find a simultaneous
Jordan decomposition: There is a finite set Λ of linear forms λ : P → C, invariant
under complex conjugation (λ ∈ Λ ⇒ λ̄ ∈ Λ), and a decomposition

V c
− =

∑

λ∈Λ

Vλ (27)

such that Vλ ⊂ ker(Sη − λ(η)I)k for all η ∈ P , where k ∈ N is sufficiently large. In
fact, if η1, . . . , ηr is a basis of P , then Vλ =

⋂r
j=1 Ej where Ej is the generalized

eigenspace of Sηj
corresponding to the eigenvalue λ(ηj). Since Sηj

is parallel,
the same holds for the generalized eigenspaces Ei and their intersection, thus the
decomposition (27) is parallel along M and therefore k+-invariant.

1One way to see this is using the Grassmann valued Gauss map τ : M → Grm(V ) which
assigns to each x ∈ M its tangent plane TxM ⊂ V . This is a K-equivariant map with dτ = α.

Hence ker dτ is an integrable distribution whose leaves form a euclidean factor, but this cannot
hold in the indecomposable case. Thus τ is an immersion, and from the extrinsic symmetry we
see that τ(M) is a totally geodesic symmetric submanifold of Grm(V ). Thus it has nonnegative
sectional curvature which is not possible for a minimal submanifold in euclidean space.

2The integer k is large enough to make ker T and im T transversal, and by self adjointness,

ker T ⊥ im T , hence these subspace form an SH -invariant orthogonal decomposition.
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Moreover, each Vλ is nondegenerate which we see by induction over r: If r = 1,
then Vλ is a generalized eigenspace of Sη and hence nondegenerate. For r > 1 we

put W =
⋂r−1

j=1 Ej . This is nondegenerate by induction hypothesis and invariant

under Sηr
. Then Vλ is a generalized eigenspace of Sηr

|W (considered as a symmetric
endomorphism on W ), and thus Vλ is a nondegenerate subspace of W .

The decomposition (27) is invariant under all Sξ, ξ ∈ V+, and if we combine Vλ

and Vλ̄, we get a real decomposition. Hence we can use again Moore’s Lemma and
the indecomposability of M to conclude that there is just one such pair, Λ = {λ, λ̄},
or in other words

V c
− = Vλ + Vλ̄. (28)

Lemma 6.2. For any η ∈ P such that λ(η) = t ∈ R, we have Sη = tI + N where
N is nilpotent with SHN = 0.

Proof. Since λ(η) = λ(η) = t, we have Sη = tI + N on V c
− = Vλ + Vλ̄ with N

nilpotent. Take any normal vector ξ = α(v, w). Note that Sξ commutes with Sη

and hence with N , thus SξN is nilpotent ((SξN)k = Sk
ξ Nk = 0) and so it has trace

zero. Now from (23) we obtain

B(ξ, η) = −2 tr(SξSη)
= −2t tr Sξ

= −2t
∑

ǫi〈Sξei, ei〉
= −2t

∑

ǫi〈ξ, α(ei, ei)〉
= −2t〈ξ,H〉

On the other hand, from (22) we see

B(ξ, η) = −2〈α(Sηv, w),H〉
= −2t〈α(v, w),H〉 − 2〈α(Nv,w),H〉
= −2t〈ξ,H〉 − 2〈SHNv,w〉.

Comparing the two results we see that SHN = 0 �

Lemma 6.3. Either S2
H = 0 or there is some η ∈ P with Sη = tI for some nonzero

t ∈ R.

Proof. Suppose that SH has a non-real eigenvalue λ(H). Then S2
H and SH are

linearly independent, and so H1 and H are linearly independent. Then we find a
real nonzero linear combination η = aH + bH1 such that λ(η) = t is real. From
the previous lemma we see that Sη = tI + N with SHN = 0. But SH is invertible,
hence N = 0. We have Sη = tI with t 6= 0: If Sη = 0 for any parallel normal field
η, we would have dη = 0 and thus η would be a constant vector with M ⊂ η⊥, but
this was excluded by the fullness assumption.

On the other hand, if λ(H) ∈ R, we have SH = sI + N with SHN = 0, but
SHN = sN + N2. If N2 6= 0, then N2 and N are linearly independent and
N2 + sN = 0 is impossible. Thus N2 = 0 and s = 0. �

Now we have finished the proof of Theorem B: M is of Ferus type unless S2
H = 0. In

fact, by Lemma 6.3 the affine normal spaces x + NxM have a common intersection
point x − η(x)/t, and the result follows from Theorem 4.1.
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