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Introduction

Beauty is a concept that everyone can relate to, whether it is in a face, a
scenic view or maybe a work of art. Everyone has encountered beauty in some
shape or form. It is without doubt subjective and strongly dependent on the
observer. However one of the few true objective things that is strongly linked
to beauty in any form is symmetry. Studies have shown that ’conventionally’
beautiful faces are generally symmetrical. In art symmetry or obvious lack
of symmetry can be powerful tools.

In ancient times patterns with lots of symmetry and in particular many
centers of symmetry were discovered and studied. More recently interesting
quasi-symmetrical patterns have been studied. One such pattern is called
a ’Penrose tiling’. There are many ways to represent this, one of the most
common is to use ’thin’ and ’fat’ ’diamonds’. Figure 1 is an example of a
Penrose tiling with these sort of tiles. A Penrose tiling has many local centers
of symmetry (rotation by 2π

5
) but at most one global center.

One of the most attractive things about the Penrose tiling is the way it can
be presented to a popular audience without going into difficult mathematical
detail. My approach is differs from the popular approach. I am trying to
work as generally as possible which leads to levels of abstraction that are not
presentable in a popular text. Therefore the audience I aim for is one that
has a sufficient mathematical background to be comfortable working with
abstract concepts.

One construction of a Penrose tiling is to start with an integer lattice
in 5 dimensional space and project it onto a 2 dimensional target subspace.
The first and main part of my project was to prove in as general a context
as possible that this construction results in a tiling of the target space. My
approach is formal. If you are unfamiliar with this construction very simple
explanations can be found on the web either by searching for ’Penrose tilings’
or following some of the links; [10, 8] both give a brief description of the
construction.

In the second part of my project I will informally discuss the inflation
deflation property that makes the Penrose tiling special. I then give ideas on
the generalisation of this property.
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The first part may seem over-formal, and hence difficult to follow. The
formality was necessary to prove the general result. I have attempted to
present the ideas in the second part in a more approachable way and an
understanding of the construction from the first part is all that should be
needed.
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Figure 1: A Penrose tiling. Generated using Quasitiler.

9



10



1 General Tilings

A more general tiling construction can be obtained from the ’Penrose tiling’
construction by using the same ideas on a more general space. In this section
I will prove that a given subset P of the integer lattice in R

n projected by π(an
orthogonal projection) onto a m dimensional subspace E generates a tiling
of the subspace. This tiling has a dual that is itself a tiling (the multigrid
tiling). This corresponds to the duality of the tiling and the pentagrid in the
Penrose case.

I am going to assume:

• E is irrational. Thus if E0 is E translated so that 0 ∈ E0 then E0∩Z
n =

{0}.

• E is regular. Thus E does not contain any points that are integer in
more than m directions. Let M be the set of points in E that are
integer in exactly m directions.

In Section 1.1 we will briefly see the idea of the construction, and establish
the concepts needed for the proof.

In Section 1.2 a number of statements are proved leading to the main
result in Theorem 1.7

There are a number of figures illustrating important concepts. I have kept
these simple. Obviously all the subtle problems are lost in these pictures,
but they are intended as an aid to visualising the concepts.

1.1 Preliminaries

The idea of the construction is that given the base space R
n and E the target

subspace, we consider the projection of ’edges’ of the integer lattice that are
entirely contained in a ’strip’ of the base space. (See figure 2)
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E

Tiles before projection

Projection strip

Figure 2: Here the base space is R
2 with the integer lattice. E corresponds to the

target space with the projection strip defined by translating the base
point of a square along E. Any edge of the integer lattice that is entirely
contained in the projection strip belongs to the ’Tiles before projection’.
(These do not show up well on black and white copies)
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Many concepts need to be defined. They build on each other and form
the basis for the theorems, that are considered in Section 1.2.

Concept I define a convex polyhedron to be the intersection of a number of
half-spaces (HSi,λ := {y ∈ R

n| yi ≥ λ} is a closed half space). A face of a con-
vex polyhedron is obtained by replacing a number of the half-spaces(HSi,λ)
with the equivalent hyperplanes(Hi,λ = {x ∈ R

n|xi = λ}).

Concept Given a convex polyhedron C ⊂ R
n. We can define the tangents

(Figure 3) and normals (Figure 4) at x ∈ δC as follows:

Tx(C) := {v|∃c : [0, ǫ] → R
n with c(0) = x c′(0) = v c((0, ǫ]) ⊂ C}

= {v|∃ǫ > 0 x + tv ∈ C ∀t ∈ (0, ǫ]} (for a convex polyhedron)

Nx(C) := {z|〈z, v〉 ≤ 0∀v ∈ Tx(C)}

x

x
x

Figure 3: The set of arrows represent the tangents at the point x to various tiles
C, i.e. Tx(C) = {v|∃ǫ > 0 x + tv ∈ C ∀t ∈ (0, ǫ]}

I extend the definitions of tangent and normal from points to edges, faces
or in general ’tiles’, of the boundary. So given a convex polyhedron C (either
open or closed), and t (open) a tile, where t ⊂ δC, then I can define Tt(C) =
Tx(C) x ∈ t and Nt(C) = Nx(C) x ∈ t. This definition is well defined since
Tx(C) = Tx′(C) ∀ x, x′∈ t and Nx(C) = Nx′(C) ∀ x, x′∈ t.

Concept Now to the multigrid. This is simply E intersected with the
integer lattice, but it turns out to be dual to the ’Penrose tiling’. Formally
I mean:

E ∩
⋃

1≤i≤n and k∈Z

Hi,k
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x

x

x

Figure 4: The set of arrows represent the normals at the point x to various tiles
C, i.e. Nx(C) = {z|〈z, v〉 ≤ 0∀v ∈ Tx(C)}

Notation Some notation I use given r ∈ R is:

• the floor ⌊r⌋ = max{i ∈ Z| i ≤ r}

• the ceiling ⌈r⌉ = min{i ∈ Z| i ≥ r}.

Concept Let Cellx be the cell of the multigrid which has x in its interior,
where x is in E, as illustrated in figure 5. I assume a general notion of cell of
any dimension. So every point in E will lie in exactly one cell. To formalise
this I need to also define Ax which is simply the largest open k-cube defined
by the integer lattice containing x. So formally assuming x is integer in the
first j directions:

Ax = {y ∈ R
n| yi = xi 1 ≤ i ≤ j yi ∈ (⌊xi⌋, ⌈xi⌉)i > j}

Cellx = E ∩ Ax

Concept Let C be the real closed unit cube. I consider the closed cube
which makes a lot of the definitions easier. If considering the open cube
seems easier that is fine, since, from the fact that E is regular and irrational,
the tilings obtained are the same (see remark 1.1). So define Cx := {y ∈
R

n| yi ∈ [xi, xi + 1]}, ie the unit cube with base point x.

14



Ax Cellx

+
+

+ xE

Figure 5: Illustration of multigrid components in a trivial case, for x situated on
a one dimensional cell (left hand figure) and a zero dimensional cell.

Concept A key notion is that of the ’Projection strip’ which is the subset of
our base space that we will be considering. For ’Penrose tilings’ the definition
that is often used is E ⊕ C := {y ∈ R

n| ∃x ∈ E with y ∈ Cx} but for
our purposes this is equivalent (see remark 1.1) to PS = {y ∈ R

n| ∃x ∈
M with y ∈ Cx} which is a more useful definition.

Let P be the set of ’Projection’ integers, then P := Z
n ∩ PS. These are

the points that when projected will give us the points in our ’Penrose type
tilings’.

The following remark establishes why the definitions of the ’projection
strip’ are equivalent. Figures 6 and 7 help to give a picture of what the two
strips are.

Remark 1.1 P = Z
n ∩ (E ⊕ C) = Z

n ∩ (E ⊕ C ′), where C ′ is the interior
of C

Proof. P ⊂ Z
n ∩ (E ⊕ C) is obvious since PS ⊂ E ⊕ C.

For all x ∈ Z
n ∩ (E ⊕ C) there exists a y ∈ E such that the cube with

origin y contains x. Since E is m-dimensional we can translate y in E to y′

15



E

Tiles before projection

Projection strip

Figure 6: Projection idea with E ⊕ C := {y ∈ R
n| ∃x ∈ E with y ∈ Cx}

E

Tiles before projection

Projection strip

Figure 7: Projection idea with PS = {y ∈ R
n| ∃x ∈ M with y ∈ Cx}
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such that x lies on a m dimensional boundary of the cube with origin y′. But
xi is integer for all i and x is 0 or 1 away from y′ in m directions. So y′ is
integer in m directions, hence y′ ∈ M .

Z
n ∩ (E ⊕ C) ⊃ Z

n ∩ (E ⊕ C ′) is obvious.

Consider the projection π⊥ of E ⊕ C onto E⊥. Let f be an open face of
a Cx cube (x ∈ E) such that dim f ≥ n − m. Since E is irrational π⊥(f) is
an open subset of E⊥. Hence can not contain any points of the boundary.
Hence a point on the boundary can only lie on a face of dimension less than
n − m. So if a boundary point y belonged to Z

n then for x ∈ E such that
y ∈ Cx, x must be integer in more than n − (n − m) = m directions. Since
E is regular, this is a contradiction. Hence Z

n ∩ (E ⊕ C) = Z
n ∩ (E ⊕ C ′)

Q.E.D

Concept For all x in E let Ix = Cx ∩ P the ’integer’ lattice points corre-
sponding to x.

Note For x in E with j integer coordinates. Ix is 2j integer lattice points
forming an j dimensional unit cube.

Proof. without loss of generality x1 to xj are the integer coordinates. So for
y in Cx:

yi ∈ Z ⇔
{

yi = xi or xi + 1 i ≤ j
yi = ⌈xi⌉ i > j

Q.E.D

Concept Call tx the tile obtained by the projection onto E of the j dimen-
sional cube (Bx) defined by the points of Ix.

Working with this concept of a tile makes it possible to keep the proof
independent of the dimension. However the intuitive ’tile’ is a maximum
dimensional tile, which is a useful concept to have, so I define T = {t|t =
tx with x ∈ M}, ie the set of maximal dimensional tiles.

17



Remark 1.2 tx is a j dimensional convex polyhedron with 2j vertices. And
there are only finitely many different tile types. And any tile has minimal
’width’ ǫ for some fixed ǫ > 0. (I explain the concept of minimal width in the
proof)

Proof. Convexity is assured since tx is is the projection of a convex polyhe-
dron.

The number of vertices are preserved because the projection is orthogonal
to E which is regular and irrational.

The finiteness follows from the fact that all tiles are projection of a j-
dimensional unit cube in one of only finitely many positions up to translation.

By a tile having ’width’ ǫ I mean that a j dimensional ball of radius ǫ can
be fitted into the tile. Given the finiteness of the tiles a minimum width ǫ
must exist.

Q.E.D

Concept We need to define the concept of neighboring m dimensional tiles.
(i.e. tiles of the form tx x ∈ M .) This could be done directly but a simpler
alternative, which I use, is through duality1.

Let x, y ∈ M then tx and ty are said to be neighbors if and only if there
exists z such that Cellz is a cell joining Cellx to Celly (i.e. Cellz contains
Cellx and Celly). Then tx and ty have a common tile tz.

Concept Now define S =
⋃

T (i.e. the disjoint union of the maximum
dimensional tiles). Define also the equivalence relation ∼ over S, such that
for p, q ∈ S with p in a tile s and q in a tile t. We have p ∼ q if and only
if s and t are neighbors and π maps p to q. This gives S = S/∼ and ̺, the
projection from S → S.

1Duality between tiles and cells will be proved later, in lemma 1.8.
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Definition 1.3 Given t ∈ T. I define

Ut =
⋃

{s ∈ T|s and t are neighbors }/∼

as the neighborhood of t.

This can be extended to be the neighborhood of any p in S in the following
way:

Up =
⋂

t∈T|p∈t

Ut

Remark 1.4 It is a direct consequence from the local tiling result (to be
presented and proved later) that Up has radius at least ǫ around p in every
direction, where ǫ > 0 is smaller than the minimum ’width’ of the tiles.

Recap, assuming x ∈ E is integer in the first j coordinates (0 ≤ j ≤ m):

E := m dimensional regular and irrational subspace of R
n

M := {y ∈ E|y is integer in m directions}
Cx := {y ∈ R

n| yi ∈ [xi, xi + 1]} (ie the unit cube with base point x)

Ax := {y ∈ R
n| yi = xi 1 ≤ i ≤ j yi ∈ (⌊xi⌋, ⌈xi⌉)i > j}

Cellx := E ∩ Ax (A cell of the multigrid)

PS := {y ∈ R
n| ∃x ∈ M with y ∈ Cx} (The ’projection’ strip)

P := Z
n ∩ PS (The ’Projection’ integers)

Ix := Cx ∩ P (The integers corresponding to x)

Bx := Span(Ix) ∩ Ċx (The open cube defined by Ix)

tx := π(Bx) (The tile defined by Ix)

T := {t|t = tx with x ∈ M}
S :=

⋃

T

p ∼ q ⇐⇒ π(p) = π(q) and p and q belong to neighboring tiles

Ut :=
⋃

{s ∈ T|s and t are neighbors }/∼

19



1.2 The Tiling

Definition 1.5 A tiling of a space X (dim(X) = m) is the union of compact
polyhedrons that cover X, with the property that the interiors do not intersect
and when the closures intersect they intersect in an i dimensional face where
0 ≤ i < m.

A polyhedron has not been defined above, but convex polyhedrons can
be used instead without an effect on the following proofs.

Remark 1.6 The multigrid is a tiling.

Proof. The multigrid is defined as the intersection of the unitary tiling with
E. So the tiles are convex polhedrons and the tile intersections have to be
subsets of tile intersections in the unitary tiling and hence valid. The covering
of E follows from the fact that the unitary tiling covers R

n.

Q.E.D

Theorem 1.7
⋃

t∈T

t is a tiling of E

.

Proof. The proof of this theorem requires a number of steps. The first step
is to establish the duality of the multigrid and the projected tiles. Then we
need to establish that locally the ’Penrose’ representation is a tiling. Finally
the global tiling results from the local result.

Lemma 1.8 establishes the duality.

The local result corresponds to showing that for any m dimensional tile t
its neighbors satisfy the definition of tiling. This implies that the neighbor-
hood Ut is an open subset of R

m surrounding t.

20



The fact that closures of tiles can only intersect in a lower dimensional
tile follows from the duality of cells and tiles. If the closures of two tiles
intersect, then the corresponding cells lie in the closure of a cell. By duality
the tile corresponding to this cell lies in the intersection.

The fact that the interiors do not intersect follows from Claim 1.10 and
the bijective correspondence between cells and tiles, since from a given tile the
tangent vectors into other tiles come from the corresponding normal vectors
in the dual. (See figure 8 for this correspondence)

The last result we need is that we have an open neighborhood in S around
the closure of every tile in S/∼. This results from the claim 1.10 and the
bijective correspondence as follows. Given an i dimensional tile the corre-
sponding cell has normal vectors going out from it covering R

m−i. Hence
there are tangent vectors going out of the tile into other tiles covering R

m−i,
so there is always an open neighborhood. (see figure 9)

Thus we have a local tiling and hence a tiling of S, since S is defined such
that the global conditions will hold.

From our projection π which maps the tiles to E we can define π′ such that
the following diagram commutes. This follows because x ∼ y ⇒ π(x) = π(y).

S
π //

̺

²²

E

S

π′

??
Ä

Ä
Ä

Ä
Ä

Ä
Ä

Ä

From Lemma 1.11 π′ is a homeomorphism. But our tiles form a tiling on
S and π′ maps a tile in S/∼ to a tile in E. Hence we have a tiling of E.

Q.E.D

Theorem 1.7 has established the result. The remainder of the section
completes the formal argument as has been referenced in the proof.

Lemma 1.8 tx and Cellx have a bijective correspondence and 〈u, v〉 = 0 ∀ u ∈
Ttx(tx) and v ∈ TCellx(Cellx) (i.e. they are perpendicular or void) for all
x ∈ E.
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Figure 8: Each pair of figures illustrates the correspondence between tangent vec-
tors and normal vectors in their dual.
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Figure 9: The right-hand figures illustrate the known fact that the normals to a cell
cover the space. The left-hand figures illustrate how the the existence
of an open neighborhood is hence assured by the tangent vectors.
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Proof. We have well defined surjective functions from x to both Cellx and
tx. Hence all that is left to show is: Cellx = Celly ⇐⇒ tx = ty ∀x, y ∈ E.
But Cellx = Celly implies that x and y are both integer in j directions,
and by definition x ∈ Cellx, hence x ∈ Celly. So, assuming without loss of
generality that x is integer in the first j directions, xi = yi 1 ≤ i ≤ j and
⌈xi⌉ = ⌈yi⌉ i ≥ j. Hence Ix = Iy and it follows that tx = ty. Similarly tx = ty
implies that Ix = Iy, so by the same reasoning as above Cellx = Celly.

For perpendicularity consider Ax and Bx. By definition Ax is fixed in the
directions where x is integer and Bx is fixed in the directions where x is not
integer. Hence 〈u′, v′〉 = 0 for all u′ ∈ TBx

(Bx) and v′ ∈ TAx
(Ax). Lemma

1.9 implies 〈u, v〉 = 0 ∀u ∈ Ttx(tx) and v ∈ TCellx(Cellx).

Q.E.D

Lemma 1.9 Given any x in E and y in the closure of Cellx. If 〈u′, v′〉 ≤ 0
for all u′ ∈ TBy

(Bx) and v′ ∈ TAx
(Ay), then 〈u, v〉 ≤ 0 for all u ∈ Tty(tx) and

v ∈ TCellx(Celly). Further if 〈u′, v′〉 = 0 ∀ u′, v′ then 〈u, v〉 ≤ 0 ∀ u, v

Proof. Given u ∈ Tty(tx) there exists u′ ∈ TBy
(Bx) such that u = π(u′). We

note first that since the projection is self adjoint we get

〈u, v〉 = 〈π(u′), v〉 = 〈u′, π(v)〉 = 〈u′, v〉

but since the multigrid is defined by inclusion we get v ∈ TAx
(Ay). Hence

〈u′, v〉 ≤ 0 or 〈u′, v〉 = 0 by assumption.

Q.E.D

Claim 1.10 Given any x in E and y in the closure of Cellx then Ttx(ty) =
ṄCelly(Cellx).

Proof. First consider TBx
(By) and TAy

(Ax). Assuming without loss of gen-
erality x is integer in its first j components, and y in its first l components
with m ≥ l ≥ j.

Recall:
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Bx =

{

z|
{

zi ∈ (xi, xi + 1) i ≤ j
zi = ⌈xi⌉ i > j

}

Ax =

{

z|
{

zi = xi i ≤ j
zi ∈ (⌊xi⌋, ⌈xi⌉) i > j

}

Giving

TBx
(By) =

{

v|















vi ∈ R i ≤ j
vi < 0 j < i ≤ l yi < xi

vi > 0 j < i ≤ l yi > xi

vi = 0 l < i

}

TAy
(Ax) =

{

v|















vi = 0 i ≤ j
vi > 0 j < i ≤ l yi < xi

vi < 0 j < i ≤ l yi > xi

vi ∈ R l < i

}

We know Ay⊥By and Bx ⊂ B̄y so Ay⊥Bx.

Take v ∈ TBx
(By) and v′ ∈ TAy

(Ax) then:

• viv
′
i = 0 For l < i or i ≤ j since vi = 0 i > l and v′

i = 0 i < j.

• viv
′
i < 0 For l ≥ i > j. There are two possibilities. Either yi < xi,

which implies that vi < 0 and v′
i > 0 or yi > xi which implies that

vi > 0 and v′
i < 0. In both cases viv

′
i < 0.

These implies 〈v, v′〉 ≤ 0. Hence TBx
(By) ⊂ NAy

(Ax) but TBx
(By) is

open so TBx
(By) ⊂ ṄAy

(Ax).

Similarly for any v such that 〈v, v′〉 ≤ 0 for every v′ ∈ TAx
(Ay) (i.e.

v ∈ NAy
(Ax)) then:

• For l < i we have v′
i = 0 hence there are no constraints on vi

25



• For i ≤ j there are no constraints on v′
i, so vi = 0

• For l ≥ i > j again there are two possibilities. Either yi < xi, which
implies that v′

i > 0, giving vi ≤ 0. Or yi > xi, which implies that
v′

i < 0, giving vi ≥ 0.

So v ∈ TBx
(By). This gives us TBx

(By) ⊃ NAy
(Ax). Taking the interior

of both sides we get TBx
(By) ⊃ ṄAy

(Ax).

So TBx
(By) = ṄAy

(Ax). Also dim(NAy
(Ax)) = n − dim(TAy

(Ax)).

But we get to Cellx from Ax by intersection with E, with dim(TCelly(Cellx)) =
dim(TAy

(Ax))−(n−m) from the irrationality of E and the fact that dim(TAy
(Ax)) ≤

m. And we got to tx from Bx by projection onto E, with dim(Ttx(ty)) =
dim(TBx

(By)) since E is irrational and dim(Bx) < m. These implies:

dim(Ttx(ty)) = dim(TBx
(By))

= dim(NAy
(Ax))

= n − dim(TAy
(Ax))

= n − dim(TCelly(Cellx)) − (n − m)

= m − dim(TCelly(Cellx))

= dim(NCelly(Cellx))

From Lemma 1.9 we get Tty(tx) ⊂ ṄCellx(Celly). Hence from the dimen-

sions Tty(tx) = ṄCellx(Celly).

Q.E.D

Lemma 1.11 π′ is a homeomorphism

Proof. In Lemmas 1.12 and 1.13 I establish that π′ is surjective and a home-
omorphism in an ǫ neighborhood of any point. So injectivity is all that is
left to show.

Lemma 1.14 states that S is a flat complete Riemmanian manifold so if
(S/∼, π′) is a covering of E. Then since they are both flat π′ must be a
homeomorphism.
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A more general theorem could be used here to establish the covering result
(see ). But a direct proof is simpler. I need to show that given any x ∈ E
there exists a neighborhood V of x such that π′−1(V ) is a disjoint union of
V ′

i and π′|V ′

i
is a homeomorphism.

For all p ∈ π′−1(x) from Lemma 1.12 there is a ball Bǫ(p) of radius
ǫ > 0 around p such that π′|Bǫ(p) is a homeomorphism. Since S has the
induced metric we have that π′|Bǫ(p) is an isometry, hence π′(Bǫ(p)) = Bǫ(x).
So all that is left to show is that for any p, p′ ∈ π′−1(x) we have Bǫ(p) ∩
Bǫ(p) = ∅. Assume this is false, then there exists a q ∈ Bǫ(p) ∩ Bǫ(p), so
p, p′ ∈ Bǫ(q). This is a contradiction since π′(p) = π′(p′) = x and π′|Bǫ(p) is
a homeomorphism.

Q.E.D

Lemma 1.12 π′ : S → E is a homeomorphism in a neighborhood of any
point (of radius > ǫ for some ǫ > 0).

Proof. Using the induced topology on S (U ′ ⊂ S is open ⇐⇒ U = ̺−1(U ′) is
open in S.) I need to show that π′ is a continuous bijection on a neighborhood
of any p ∈ S/∼, and its inverse is also continuous. The bijectivity has
already been established when restricted to Up in the local result of the main
theorem (1.7). From remark 1.4 considering the induced metric on S/∼ the
neighborhood is of radius at least > ǫ for some ǫ > 0.

The next results hold for the function globally.

∀U ⊂ E open we have π′−1(U) open in S ⇐⇒ ̺−1π′−1(U) = π−1(U) is
open which the continuity of π.

∀U ⊂ S open (i.e. ̺−1(U) open) we have (π′−1)−1(U) = π′(U) = π′ ◦
̺(̺−1U) = π(̺−1U) which is open since π is an open function.

Q.E.D

Lemma 1.13 π′ : S → E is surjective.
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Proof. π′(S) is open since π′ is an open mapping (projections are open map-
pings).

Also π(S) is closed since S is the union of closed tiles (of radius at least
ǫ > 0) and π is an isometry on any tile. But π = π′ ◦ ̺ hence π′ ◦ ̺(S) is
closed and since ̺ is surjective π′(S) is closed.

Q.E.D

Lemma 1.14 S is a complete m dimensional flat Riemannian manifold

Proof. ∀ p ∈ S ∃ x ∈ M such that p ∈ tx. But we now know2 that p lies in
the interior of Ux so we have an open neighborhood around any point that is
homeomorphic to R

m. And any Cauchy sequence will eventually be contained
in one such neighborhood, so will converge. We still need to show that S is
Hausdorf, i.e. for all p, q ∈ S there exist open neighborhoods around them
that don’t intersect. Given p, q ∈ S if there exists a tile t such that p, q ∈ Ut

then the Hausdorf condition is satisfied since Ut is Hausdorf (lemma 1.12 has
established that Ut is homeomorphic to a closed subset of R

m). If no such
neighborhood exists then take tiles s, t such that p ∈ s, q ∈ t. If Us ∩ Ut 6= ∅
then take any tile t′ lying in the intersection and both s, t must be neighbors
so both are contained in Ut hence p, q lie in Ut. But we assumed no such
neighborhood exists. Hence Us ∩ Ut = ∅ and we have satisfied the Hausdorf
definition. Flatness follows since the metric is induced from E which has a
flat metric.

Q.E.D

2This is an important point. It follows from the the local tiling result
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2 General Inflation and Deflation property

The aim of this section is to extend the generalisation of the ’Penrose’ tiling
informally3. In the previous chapter the ’Penrose’ tiling construction was
generalised, but the construction is not enough to get the special proper-
ties. In the ’Penrose’ tiling the special properties can be explained by the
inflation/deflation property.

The first aim of this chapter is to try and decompose the ideas of infla-
tion/deflation:

• Section 2.1 presents the idea of splitting the space and the ’Penrose’
example will be developed.

• Section 2.2 looks into the inflation deflation property itself.

• Section 2.3 explores the idea of acting a group on some of the directions
that will be projected.

The second aim will be to introduce ideas that have not been explored
fully:

• Section 2.4 explores examples and ideas for the case where dimE = 2.

• Section 2.5 mentions cases with dim E > 2.

2.1 Splitting the space

Starting with the base space B = R
n, we need an automorphism A that

induces a natural splitting: B ≡ E0 ⊕E1 ⊕E⊥. Each of these subspaces will
have a different role in the construction.

3The informal nature of some of this section may come as a stark contrast to the formal
approach taken in the previous section. The reason for this is that the aims of the two
sections are drastically different. In the first the aim is to present and prove a general
result, while the second is more exploratory and the aim is to present ideas in a readable
way.
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From the general tiling result we know that E (the m dimensional plane
onto which we project) must be irrational and regular. E will be defined by
E = E1 + v for some v ∈ E⊥, hence E1 must be irrational and v must be
chosen to satisfy the regularity condition.

One of the areas I don’t understand fully is E⊥. In the ’penrose’ case it
is interchangeable with E1. I think that this could be generalised to:

E⊥ ≡ ⊕k
1E1

for some given k. This is an area that needs further thought, especially the
link with the hyperplanes along the E0 direction, which will be explained
briefly later.

The following proposition establishes splitting in the ’Penrose’ case.

Proposition 2.1 We can get a natural splitting of R
5 by applying an appro-

priate automorphism.

Proof. Consider A : R
5 → R

5 then linear map such that A(ei) = ei+1 for
i =1 to 5 mod 5. I.E

A













a
b
c
d
e













=













e
a
b
c
d













∀













a
b
c
d
e













∈ R
5

Which gives:

A =













0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













For an eigenvalue λ

det (A − λI) = det













−λ 0 0 0 1
1 −λ 0 0 0
0 1 −λ 0 0
0 0 1 −λ 0
0 0 0 1 −λ













= 1 − λ5
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ie:

λ ∈ {1, e 2πi
5 , e

4πi
5 , e

6πi
5 , e

8πi
5 } ⇐⇒ λ ∈ {1, ǫ, ǫ2, ǭ2, ǭ} with ǫ = e

2πi
5

Consider a vector wλ =













1
λ̄
λ̄2

λ̄3

λ̄4













then Awλ =













λ̄4

1
λ̄
λ̄2

λ̄3













= λwλ. From the

equalities λ5 = 1 and λ̄4 = λ which hold for all λ. Define E0 := R.













1
1
1
1
1













,

E1 := SpanR(wǫ, wǭ) and E2 := SpanR(w2
ǫ , w

2
ǭ ). Then:

R
5 = E0 ⊕ E1 ⊕ E2

with A mapping Ei to itself for each i.

Q.E.D

2.2 Inflation. Deflation.

The main idea that makes the ’Penrose’ tiling so special, is the fact that if
you paint every tiling in the same special way than the obtained pattern is
also a ’Penrose’ tiling but not the same one. This is called deflation. The
inverse function is inflation, figure 10. I think in general the inverse can be the
composition of multiple functions, this observation comes from considering
the 7-dimensional case seen in section 2.4. 4

In the ’Penrose’ case the functions are:

S(ei) := e(i+1 mod 5) + e(i−1 mod 5)

4In section 2.4 I actually turn this statement around since in the 7-dimensional case it
looks easier to consider the inflation and the take the inverse(deflation) to be the compo-
sition of multiple functions.
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Figure 10: Tiles with subdivision

T (ei) := e(i+2 mod 5) + e(i−2 mod 5)

S|E1
= (

−1 +
√

5

2
)Id

T |E1
= (

−1 −
√

5

2
)Id

Hence (S ◦ T )|E1
= −Id. In fact this also holds on E⊥ in the ’Penrose’ case.

The map S preserves the splitting. When restricted to E1 ⊕ E⊥ it can
be simply seen as shrinking in the E1 direction and expanding in the E⊥

direction(s), i.e. λId on each irreducible subspace of E1 ⊕ E⊥, with |λ| > 1
on subspaces of E⊥ and |λ| < 1 on E1. The informal reason is that we want
the image of the projection strip to contain the projection strip of the image
of E (E ′). (see figure 11)

What is especially important is that the images of the integer points in
the projection strip of E ′, after projection, are hit by the images of integer
points in the projection strip of E, after projection composed with S, i.e.

π′(∪x∈M ′Ix) ⊂ π′(S(∪x∈MIx))

Given the following notation Ix and M as defined in chapter 1, M ′ := {y ∈
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E

Projection strip of Ejection str

S( E )=E'S( E )=E'

Projection strip of E'jection str

S( Projection strip of Eojection strip of E )ojection str

Figure 11: The action of S on E gives E′ and see here both the projection strip
of E′ and the action of S on the projection strip of E

E|y is integer in m directions} and π′(x) is the projection of the projection
strip of E ′ onto E ′.

What the last statement implies is that the corner points of every tile
are the corner points of some tile in the subdivision tiling. What we haven’t
got is the uniqueness of the subdivision of a tile. In the ’Penrose’ case this
follows from direct exploration that there is a unique subdivision of the tiles
but in general finiteness of subdivisions might be enough and that follows
directly in the same way that finiteness of the tiles follows.

In section 2.4 the ’Penrose’ case will be explored further along with the
other possible ’Penrose type tilings’ of R

2.
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2.3 Working on a ’cylinder’

In the previous section we ’forgot’ about E0. In the ’Penrose’ case one way
to rectify this is to consider the set of hyperplanes (or in general subspaces)
orthogonal to E0 containing integer points. These can be seen as levels away

from the origin along the vector a :=













1
1
1
1
1













. There are four levels that will

intersect the original projection strip. Call Hi the hyperplane through the
point i

5
a for i = 1, 2, 3, 4.

The problem is that S will map the hyperplane Hi to H2i so nothing maps
to Hodd. The best way to see that this is no problem is to apply a group
action Z in the E0 direction identifying points which are αa for α in Z. This
means working on the infinite cylinder R

5/Z and not on the base space R
5.

It is clear that this does not affect the tiling result since no points in
the original projection strip are identified. It also follows that the split-
ting is still valid and correct. This makes the mapping S applied to the
set {H1, H2, H3, H4} a bijection onto itself even though S wraps around the
cylinder twice.

I think this can be applied more generally but formalising it in general
requires more thought. On of the main difficult arises when dimE > 2. This
will be mentioned briefly in section 2.5.

2.4 Ideas on examples with dim E = 2

A generalisation that follows the ’Penrose’ construction very closely might
be the only type of construction that will satisfy the inflation-deflation idea
with dim E = 2.

What I mean by this is that given a base space R
n then the splitting is

E0 ⊕ E1 ⊕ · · · ⊕ Ek, with E0 the one dimensional subspace defined by the
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vector a :=







1
...
1






and the Ei’s are all equivalent. Which means k = n−1

2

giving n odd and strictly bigger than five, since both E1 and E2 have to exist
to satisfy the construction.

Also given an appropriate basis, ignoring the E0 component again, and
taking j ∈ {1, . . . , k} we can define:

Sj(ei) := e(j+1 mod n) + e(j−1 mod n)

Sj|E1
= λjId

It should follow that if the above equation holds then the following equation
also holds given the appropriate basis. But I have not checked the formal
necessary conditions.

Sj|Ej
= λ1Id

These three equations specify exactly how S acts on all irreducible sub-
spaces.

Something which I think follows directly from this construction is that
for n ≥ 9 we will not get the necessary ’shrinking’ on E1 and ’expansion’
on all irreducible subspaces of E⊥. Hence the only 2 possible constructions
are the ’Penrose’ case n = 5 and n = 7. There are a number of interesting
differences between the two cases. Notably:

• in the five dimensional case:

S2 ◦ S1(e1) = e2 + e3 + e4 + e5 = a − e1

So ignoring E0 gives S−1
1 = −S2.

• in the seven dimensional case:

S3 ◦ S2 ◦ S1(e1) = 2e1 + e2 + e3 + e4 + e5 + e6 + e7 = a + e1

So ignoring E0 gives S−1
1 = S3 ◦ S2.
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In the ’Penrose’ case the natural way to proceed was to define the deflation
as the Sj where |λj| < 1, and then define inflation as the inverse. In the 7
dimensional case deflation is not well defined in this way however defining
inflation as the Sj where |λj| > 1 and then considering the inverse of that to
be deflation5 is well defined.

Also the subdivision of the tile in the ’Penrose’ case is very easy to find
because it follows from the golden ratio, and is obvious looking at figure
10. The key in the ’Penrose’ case is the different possible one dimensional
tiles(edges). There are only two, the first being the long diagonal of the ’fat
tile’ and the second being an edge plus the short diagonal of the thin tile.
The equality of these two lengths corresponds to the golden ratio.

There is no simple equivalent rule for the seven dimensional case. However
if we are to get a subtiling I believe there must be a formula6 which gives
different one dimensional tiles in terms of the deflated edges and diagonals.
It may be that multiple deflations are needed to find such a formula, or that
the notion of deflation is chosen to satisfy such a formula. I believe that the
latter approach will yield better results.

The last comments I want to add in this section concern the three figures
12, 13, and 14. I find it surprising looking at these three (all created in
Quasitiler with the equivalent zooming) that supposedly the 9-dimensional
case is fundamental different from the 7-dimensional case, which brings me
to the following query. I wonder whether a possible construction for this
9-dimensional inflation deflation is in some way to consider a similar but
slightly more complicated inflation-deflation on a 4 dimensional subspace
and then consider a special 2 dimensional subset.

5An important thing to check would be that this new deflation satisfies the idea stated
in section 2.3. Which the old on did not.

6This would corresponds in some sense to the condition in section 2.3 that integer
points in the projection strip of E′ are hit, ignoring E0.

36



Figure 12: A Penrose tiling. Generated using Quasitiler.
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Figure 13: A tiling starting from R
7. Generated using Quasitiler.
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Figure 14: A tiling starting from R
9. Generated using Quasitiler.
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2.5 Ideas on examples with dim E > 2

A large proportion of the time spent on this project was on a specific dim E =
3 example. But has not yet yielded any real result. Here I merely mention
some ideas for further work.

Continuing from my last comment in the previous chapter, and the con-
struction mentioned there, it would be interesting to set E ≡ Ei ⊕Ej. What
I mean is to look at the k = 4 dimensional subset obtained by considering
2 irreducible subsets. This would imply a non uniform deflation over the
space. Then using the same sort of argument as in the previous section it
would only be interesting for n = 9 or n = 11. And if this were interesting it
would be easy to generalise to any even k. Wether the concept remains in-
teresting when there is non uniform deflation is another question since some
of the ’nice’ properties will be lost.

For the more general approach I just mention three problems that are
still unresolved.

• dim E > 1. This makes the ’cylinder’ approach more difficult it might
still be possible using a different group action or by solving the problem
of covering the integers directly.

• Orientation problems. In the example mentioned earlier this was the
killing factor which kept coming back.

• No obvious inverse function. Again this was something I was always un-
comfortable with. Even though it is not necessary in the construction
of either the inflation or the deflation, I do not understand how inter-
esting results can be obtained when only one can be defined without
the other.
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Conclusion

The main part of this thesis is the ’tiling’ result, presented in part 1. It states
that when the ’Penrose type’ construction is followed, then the resulting
’pattern’ is a tiling.

In the ’Penrose’ case this is an intuitive result, but even then the proof is
not obvious. My initial aim was to prove the ’Penrose’ case in a sufficiently
general way that the same method could be used for other specific cases. It
became apparent that a general formulation would require merely a more
formal language and the avoidance of case studies in the proof.

The first part of this thesis identifies the ’Penrose type’ construction as
giving a tiling. This is a necessary base in the investigation of ’Penrose type
tilings’. A formal statement of the tiling theorem that is independent of the
proof, and an informal description of the general construction may make the
second part more accessible by enabling those interested in ’Penrose type
tilings’ to skip the details of this proof.

The second part of the thesis is exploratory in nature, but the emphasis
has been kept on taking a general standpoint. An alternative would have
been to follow the ’Penrose case’ through fully, lifting the argument to other
specific examples. As with the first section, this was my initial approach and
would still be an interesting exercise. I hope that some insight can be gained
from my more general observations.

I recommend investigating the tiling of the plane using the rhombuses
with angles that are multiple of 2π

7
as the most important single case. Using

the inflation and deflation described in section 2.4, it is possible that this
case is relatively straightforward to follow through.

In Section 2.5 I briefly considered higher-dimensional cases. Most of my
observations resulted from an exploration of a specific three dimensional
tiling. Orientation was the main problem in that case and I suggest that
this would be a key aspect to an understanding of this case.

If these specific cases are worthy of study then I contend that it is even
more important to step back and look at the problem more generally. This
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was my aim in the second part. In doing so I hope to have raised some issues
that need to be addressed to make a ’Penrose type tiling’ well defined.
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